Lecture Notes on Discrete Mathematics

A K Lal S Pati

February 17, 2016

General Instructions

Throughout this book, an item with a label 2.1.3 means the 3 -rd item of the 1 -st section of Chapter 2. While defining a new term or a new notation we shall use bold face letters. The symbol := is used at places we are defining a term using equality symbol. A symbol !! at the end of a statement reminds the reader to verify the statement by writing a proof, if necessary.
We assume that the reader is familiar with the very basic of counting. A reader who is not, may avoid the counting items in the initial parts till we start to discuss counting.
We also assume that the reader is familiar with some very basic definitions involving sets.
This book is written with the primary purpose of making the reader understand the discussion. We do not intend to write elaborate proofs for the reader to read, as there is no end to elaboration. We request the reader to take each statement in the book with the best possible natural meaning.
Here are a few collected quotes, mainly intended to inspire the authors.

Albert Einstein

- The value of a college education is not the learning of many facts but the training of the mind to think.
- Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution.
It is, strictly speaking, a real factor in scientific research.
- Everything should be made as simple as possible, but no simpler.
- Do not worry about your difficulties in Mathematics. I can assure you mine are still greater.

Contents

1 Basic Set Theory 5
1.1 Common notations 5
1.2 preliminaries 5
1.3 More on principle of mathematical induction 12
1.4 Integers 16
2 Advanced topics in set theory 27
2.1 Families of Sets 27
2.2 More on Relations 28
2.3 More on functions 33
2.4 Supplying bijections 36
3 Countability, cardinal numbers* and partial order 41
3.1 Countable-uncountable 41
3.2 Partial orders 44
4 Logic 55
4.1 Propositional logic 55
4.2 Predicate logic 68
5 Lattices and Boolean Algebra 75
5.1 Lattices 75
5.2 Boolean Algebras 81
6 Counting 87
6.1 Permutations and combinations 87
6.1.1 Multinomial theorem 94
6.2 Circular permutations 95
6.3 Solutions in nonnegative integers 100
6.4 Set partitions 103
6.5 Lattice paths and Catalan numbers 108
6.6 Some Generalizations 110
7 Advanced Counting Principles 113
7.1 Pigeonhole Principle 113
7.2 Principle of Inclusion and Exclusion 117
7.3 Generating functions 120
7.4 Recurrence relation 130
7.5 Generating function from recurrence relation 133
8 Graphs 143
8.1 Basic Concepts 143
8.2 Connectedness 149
8.3 Isomorphism in graphs 153
8.4 Trees 155
8.5 Connectivity 162
8.6 Eulerian Graphs 164
8.7 Hamiltonian Graphs 167
8.8 Bipartite Graphs 170
8.9 Matching 171
8.10 Ramsey Numbers 174
8.11 Degree Sequence 175
8.12 Planar Graphs 176
8.13 Vertex Coloring 180
8.14 Adjacency Matrix 180
8.15 More Exercises 181
Index 184

Chapter 1

Basic Set Theory

1.1 Common notations

The following are some notations we shall follow throughout this document.
$\mathbb{N} \quad: \quad$ the set of natural numbers
$\mathbb{N}_{0} \quad$: the set $\mathbb{N} \cup\{0\}$, called the set of whole numbers
$\mathbb{Z} \quad$: the set of integers
$\mathbb{Q} \quad: \quad$ the set of rational numbers
$\mathbb{R} \quad$: the set of real numbers
$\mathbb{C} \quad$: the set of complex numbers
$[n]$: the set $\{1,2, \ldots, n\}$
$A^{c} \quad: \quad$ the complement of a set A in some set that will be clear from the context
$\mathcal{P}(A) \quad$: the power set of A
$A \times B$: the cartesian product of A and B
$\emptyset \quad: \quad$ the empty set
$p \mid a \quad$: the integer p divides the integer a

1.2 preliminaries

We expect the readers to have familiarity with the following definitions.
Definition 1.2.1. Let A and B be two sets.

1. [Subset of a set] If C is a set such that each element of C is also an element of A, then C is said to be a subset of the set A, denoted $C \subseteq A$.
2. [Equality of sets] The sets A and B are said to be equal if $A \subseteq B$ and $B \subseteq A$, denoted $A=B$.
3. [Cartesian product of sets] The cartesian product of A and B, denoted $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Specifically, $A \times B=\{(a, b) \mid a \in$ $A, b \in B\}$.
4. [Set complement] Let $C \subseteq A$. The complement of C in A, denoted C^{c}, is a set that contains every element of A that is not an element of C. Specifically, $C^{c}=\{x \in A \mid x \notin C\}$.
5. [Set union] The union of A and B, denoted $A \cup B$, is the set that exactly contains all the elements of A and all the elements of B. Specifically, $A \cup B=\{x \mid x \in A$ or $x \in B\}$.
6. [Set intersection] The intersection of A and B, denoted $A \cap B$, is the set that only contains the common elements of A and B. Specifically, $A \cap B=\{x \mid x \in A$ and $x \in B\}$. The set A and B are said to be disjoint if $A \cap B=\emptyset$.
7. [Set difference] The set difference of A and B, denoted $A \backslash B$, is a set that contains all those elements of A which are not in B. Specifically, $A \backslash B=\{x \in A \mid x \notin B\}$.
8. [Symmetric difference] The symmetric difference of A and B, denoted $A \Delta B$, is defined by $(A \backslash B) \cup(B \backslash A)$.

Example 1.2.2. Let $A=\{\{b, c\},\{\{b\},\{c\}\}, b\}$ and $B=\{a, b, c\}$. Then

1. $A \cap B=\{b\}$,
2. $A \cup B=\{a, b, c,\{b, c\},\{\{b\},\{c\}\}\}$,
3. $A \backslash B=\{\{b, c\},\{\{b\},\{c\}\}\}$,
4. $B \backslash A=\{a, c\}$, and
5. $A \Delta B=\{\{b, c\},\{\{b\},\{c\}\}, a, c\}$.

The following are a few well known facts. The readers are supposed to verify them for clarity.
Fact 1.2.3. 1. For any set A, we have $A \subseteq A$ and $\emptyset \subseteq A$.
2. If $A \subseteq B$ then it is not necessary that $B \subseteq A$.
3. For any set A and B, the sets $A \backslash B, A \cap B$ and $B \backslash A$ are pairwise disjoint.
4. For any set A and B, we have

$$
\begin{align*}
A & =(A \backslash B) \cup(A \cap B) \tag{1.1}\\
A \cup B & =(A \backslash B) \cup(A \cap B) \cup(B \backslash A) \tag{1.2}
\end{align*}
$$

5. If $B \subseteq A$, then $A=(A \backslash B) \cup B$ (follows from (1.1)).
6. $A \Delta B=(A \cup B) \backslash(A \cap B)$ (follows from (1.2) and Item 3).

Definition 1.2.4. [Power set] Let A be a set and $B \subseteq A$. Then, the set that contains all subsets of B is called the power set of B, denoted $\mathcal{P}(A)$.

Example 1.2.5. 1. Let $A=\emptyset$. Then, $\mathcal{P}(\emptyset)=\{\emptyset, A\}=\{\emptyset\}$.
2. Let $A=\{\emptyset\}$. Then, $\mathcal{P}(A)=\{\emptyset, A\}=\{\emptyset,\{\emptyset\}\}$.
3. Let $A=\{a, b, c\}$. Then, $\mathcal{P}(A)=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$.
4. Let $A=\{\{b, c\},\{\{b\},\{c\}\}\}$. Then, $\mathcal{P}(A)=\{\emptyset,\{\{b, c\}\},\{\{\{b\},\{c\}\}\},\{\{b, c\},\{\{b\},\{c\}\}\}\}$.

Definition 1.2.6. [Relation, domain set and codomain set] Let A and B be two sets. A relation f from A to B, denoted $f: A \rightarrow B$, is a subset of $A \times B$. The set A is called the domain set and the set B is called the codomain set. Thus, for any sets A and B the sets \emptyset and $A \times B$ are always relations from A to B.

Example 1.2.7. Let $A=[3], B=\{a, b, c\}$ and $f=\{(1, a),(1, b),(2, c)\}$. Then, $f: A \rightarrow B$ is a relation. We can draw a picture for $f .{ }^{1}$

Definition 1.2.8. 1. [Domain, range and inverse relation] Let $f: A \rightarrow B$ be a relation. Then, by the domain of \boldsymbol{f}^{2} we mean the set $\operatorname{dom} \boldsymbol{f}:=\{a \mid(a, y) \in f\}$ and by the range of \boldsymbol{f} we mean the set $\mathbf{r n g} \boldsymbol{f}:=\{b \mid(x, b) \in f\}$. The inverse of f is $f^{-1}:=\{(y, x) \mid(x, y) \in f\}$. Notice that f^{-1} is a relation from B to A. For example, the relation f in Example 1.2.7 has $\operatorname{dom} f=\{1,2\}, \operatorname{rng} f=\{a, b, c\}$ and $f^{-1}=\{(a, 1),(b, 1),(c, 2)\}$.
2. [Pre-image and image] Let $f: A \rightarrow B$ be a relation and $(x, y) \in f$. We call x a preimage of y and y an image of x. Let $f: A \rightarrow B$ be a relation and X be any set. Then, we define $f(X):=\{y \mid(x, y) \in f, x \in X\}$. Thus, $f(X)=\emptyset$ if $X \cap A=\emptyset$. We write $f(x)$ to mean $f(\{x\})$. We write $f(x)=y$ to mean that $f(x)=\{y\}$. For example, consider the relation f in Example 1.2.7. Then,
(a) for $X=\{1,4, c\}$, one has $f(X)=\{a, b\}$.
(b) $f(1)=\{a, b\}, f(2)=c$ and $f(3)=\emptyset$.
(c) $f^{-1}(c)=2, f^{-1}(b)=1, f^{-1}(1)=\{\emptyset\}, f^{-1}(4)=\{\emptyset\}$ and $f^{-1}(X)=\{2\}$.

Definition 1.2.9. [Single valued relation and function] A relation $f: A \rightarrow B$ is single valued if $f(x)$ is a singleton, for each $a \in \operatorname{dom} f$. A function f from A to B is a single valued relation such that $\operatorname{dom} f=A$. Henceforth, for any function f, we assume that $\operatorname{dom} f \neq \emptyset$. For example, the relation f in Example 1.2.7 is not single valued. However, if we delete ($1, a$) from f, then it is single valued. Moreover, to make f a function from A to B, we need to add either $(3, a)$, or $(3, b)$, or $(3, c)$. In particular, the relations $g_{1}=\{(1, b),(2, c),(3, b)\}$ and $g_{2}=\{(1, b),(2, c),(3, a)\}$ are indeed functions.

The following is an immediate consequence of the definition.

[^0]Proposition 1.2.10. Let $f: A \rightarrow B$ be a relation and S be any set. Then,

1. $f(S) \neq \emptyset \Leftrightarrow \operatorname{dom}(f) \cap S \neq \emptyset$.
2. $f^{-1}(S) \neq \emptyset \Leftrightarrow \operatorname{rng}(f) \cap S \neq \emptyset$.

Proof. We will prove only one way implication. The other way is left for the reader.
Part 1: Since $f(S) \neq \emptyset$, one can find $a \in S \cap A$ and $b \in B$ such that $(a, b) \in f$. This, in turn, implies that $a \in \operatorname{dom}(f) \cap S(a \in S)$.
Part 2: Since $\operatorname{rng}(f) \cap S \neq \emptyset$, one can find $b \in \operatorname{rng}(f) \cap S$ and $a \in A$ such that $(a, b) \in f$. This, in turn, implies that $a \in f^{-1}(b) \subseteq f^{-1}(S)$.

Definition 1.2.11. [One-one/Injection] A function $f: A \rightarrow B$ is called one-one (also called an injection), if $\left|f^{-1}(b)\right| \leq 1$, for each $b \in B$. Equivalently, $f: A \rightarrow B$ is one-one if $f(x) \neq f(y)$ is true, for each pair $x \neq y$ in A. Equivalently, f is one-one if $x=y$ is true, for each pair $x, y \in A$ with $f(x)=f(y)$.

Convention:

Let $p(x)$ be a polynomial in x with integer coefficients. Then, by writing ' $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is a function defined by $f(x)=p(x)^{\prime}$, we mean the function $f=\{(a, p(a)) \mid a \in \mathbb{Z}\}$. For example, the function $f(x)=x^{2}$ stands for the set $\left\{\left(a, a^{2}\right) \mid a \in \mathbb{Z}\right\}$.
Example 1.2.12. 1. In Definition 1.2.9, the function g_{2} is one-one whereas g_{1} is not one-one.
2. The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=x^{2}$ is not one-one.
3. The function $f: \mathbb{N} \rightarrow \mathbb{N}_{0}$ defined by $f(x)=x^{2}$ is one-one.
4. The function $f:[3] \rightarrow\{a, b, c, d\}$ defined by $f(1)=c, f(2)=b$ and $f(3)=a$, is one-one. It can be checked that there are 24 one-one functions $f:[3] \rightarrow\{a, b, c, d\}$.
5. Let $\emptyset \neq A \subsetneq B$. Then, $f(x)=x$ is a one-one map from A to B.
6. There is no one-one function from the set [9] to its proper subset [8].
7. There are one-one functions f from the set \mathbb{N} to its proper subset $\{2,3, \ldots\}$. One of them is given by $f(1)=3, f(2)=2$ and $f(n)=n+1$, for $n \geq 3$.

Definition 1.2.13. [Restriction function] Let $f: X \rightarrow Y$ be a function and $A \subseteq X, A \neq \emptyset$. Then, by f_{A} we mean the restriction of \boldsymbol{f} to \boldsymbol{A} and denote it by $\boldsymbol{f}_{\boldsymbol{A}}$. That is, $f_{A}=\{(x, y) \mid$ $(x, y) \in f, x \in A\}$.

Example 1.2.14. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as $f(x)=1$ if x is irrational and $f(x)=0$ if x is rational. Then, $f_{\mathbb{Q}}: \mathbb{Q} \rightarrow \mathbb{R}$ is the constant 0 function.

Proposition 1.2.15. Let $f: A \rightarrow B$ be a one-one function and C be a nonempty subset of A. Then, f_{C} is also one-one.

Proof. Let if possible, $f_{C}(x)=f_{C}(y)$, for some $x, y \in C$. Then, by definition of f_{C}, we have $f(x)=f(y)$. As f is one-one, we get $x=y$. Thus, f_{C} is one-one.

Definition 1.2.16. [Onto/Surjection] A function $f: A \rightarrow B$ is called onto (also called a surjection), if $f^{-1}(b) \neq \emptyset$, for each $b \in B$. Equivalently, $f: A \rightarrow B$ is onto if 'each $z \in B$ has some pre-image in A^{\prime}.
Example 1.2.17. 1. In Definition 1.2.9, the function g_{2} is onto whereas g_{1} is not onto.
2. There are 6 onto functions from [3] to [2]. For example, $f(1)=1, f(2)=2$ and $f(3)=2$ is one such function.
3. Let $\emptyset \neq A \subsetneq B$. Choose $a \in A$. Then, $g(y)=\left\{\begin{array}{ll}y & \text { if } y \in A, \\ a & \text { if } y \in B \backslash A .\end{array}\right.$ is an onto map from B to A.
4. There is no onto function from the set [2] to its proper superset [3].
5. There are onto functions f from the set $\{2,3, \ldots\}$ to its proper superset \mathbb{N}. One of them is $f(x)=x-1$.

Definition 1.2.18. [Bijection and equivalent set] Let A and B be two sets. A function $f: A \rightarrow B$ is said to be a bijection if f is one-one as well as onto. The sets A and B are said to be equivalent if there exists a bijection $f: A \rightarrow B$.

Example 1.2.19. 1. In Definition 1.2.9, the function g_{2} is a bijection.
2. The function $f:[3] \rightarrow\{a, b, c\}$ defined by $f(1)=c, f(2)=b$ and $f(3)=a$, is a bijection. Thus, the set $\{a, b, c\}$ is equivalent to [3].
3. Let $\emptyset \neq A \subseteq A$. Then, $f(x)=x$ is a bijection. Thus, the set A is equivalent to itself.
4. If $f: A \rightarrow B$ is a bijection then $f^{-1}: B \rightarrow A$ is a bijection. Thus, if A is equivalent to B then B is equivalent to A.
5. The set \mathbb{N} is equivalent to $\{2,3, \ldots\}$. Indeed the function $f: \mathbb{N} \rightarrow\{2,3, \ldots\}$ defined by $f(1)=3, f(2)=2$ and $f(n)=n+1$, for $n \geq 3$ is a bijection.

The following is known as the 'principle of mathematical induction' in weak form.
Axiom 1.2.20. [Principle of mathematical induction (PMI): Weak form] Let $S \subseteq \mathbb{N}$ be a set which satisfies

1. $1 \in S$ and
2. $k+1 \in S$ whenever $k \in S$.

Then, $S=\mathbb{N} .{ }^{1}$
Fact 1.2.21. 1. Let A, B and C be sets and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. Then, $h: A \rightarrow C$ defined by $h(x)=g(f(x))$ is a bijection.

Proof. Left to the reader.

[^1]2. Let A and B be two disjoint sets and let $f: A \rightarrow[n]$ and $g: B \rightarrow[m]$ be two bijections. Then, the function $h: A \cup B \rightarrow[m+n]$ defined by $h(x)=\left\{\begin{array}{ll}f(x) & \text { if } x \in A \\ g(x)+n & \text { if } x \in B\end{array}\right.$ is a bijection.
3. Fix $n \geq 2$ and let $f: A \rightarrow[n]$ be a bijection such that for a fixed element $a \in A$, one has $f(a)=k$. Then, $g: A \backslash\{a\} \rightarrow[n-1]$ defined by $g(x)=\left\{\begin{array}{ll}f(x) & \text { if } f(x) \leq k-1 \\ f(x)-1 & \text { if } f(x) \geq k+1\end{array}\right.$ is a bijection.
4. For any positive integers n and k, there is no bijection from $[n]$ to $[n+k]$.

Proof. Let us fix k and prove the result by induction on n. The result is clearly true for $n=1$ as $k+1 \geq 2$. So, let the result be true for n. We need to prove it for $n+1$. On the contrary, assume that there exists a bijection $f:[n+1] \rightarrow[n+1+k]$. Then, by Fact 1.2.21.3, we get a bijection $g:[n] \rightarrow[n+k]$, where $a=n+1$. Thus, we arrive at a contradiction to the induction assumption.

Definition 1.2.22. [Number of elements in a set] A set A is said to be finite if either A is empty or A is equivalent to [n], for some natural number n. A set which is not finite is called infinite. We say ' A has n elements' or 'the number of elements in A is n ' to mean that ' A is equivalent to $[n]$ '. We write $|A|=n$ to mean that A has n elements. Conventionally, the number of elements in an empty set is zero. If $f:[n] \rightarrow A$ is a bijection, then A can be listed as $\left\{a_{1}=f(1), \ldots, a_{n}=f(n)\right\}$.

Fact 1.2.23. \quad. Let A and B be two disjoint sets with $|A|=m$ and $|B|=n$. Then, $|A \cup B|=$ $m+n$.

Proof. Use Fact 1.2.21.2.
2. Any subset of $[n]$ is finite.

Proof. We use PMI to prove this. It is true for $n=1$. Let the result be true for $[n-1]$. Now, let $S \subseteq[n]$. If $n \notin S$, then $S \subseteq[n-1]$ and hence using PMI the result follows. If $n \in S$, let $T=S \backslash\{n\}$. Then, by PMI, T is finite and hence by Fact 1.2.23.1, S is finite as S is disjoint union of T and $\{n\}$.
3. Any subset of a finite set is finite.

Proof. Let $|S|=n$, for some $n \in \mathbb{N}$. Then, there is a bijection $f: S \rightarrow[n]$. Let $T \subseteq S$. If T is empty then there is nothing to prove. Else, consider the map $f_{T}: T \rightarrow f(T)$. This map is a bijection. By Fact $1.2 .23 .2, f(T) \subseteq[n]$ is finite and hence T is finite (use Fact 1.2.21.1).
4. Let A and B be two finite sets, then $|A \cup B|=|A|+|B|-|A \cap B|$.

Proof. Using (4.1.2), we have $A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A)$. As the sets $A \backslash B$, $A \cap B$ and $B \backslash A$ are finite and pairwise disjoint, the result follows from Fact 1.2.23.1.
5. Let A be a nonempty finite set. Then, for any set $B,|A|=|A \backslash B|+|A \cap B|$.

Proof. As A is finite, $A \backslash B$ and $A \cap B$ are also finite. Now, use Fact 1.2.23.1.
6. Let A be a nonempty finite set and $B \subseteq A$, then $|B| \leq|A|$. In particular, if $B \subsetneq A$ then $|B|<|A|$.

Proof. Since $B=A \cap B$, the result follows from Fact 1.2.23.5.
7. Let n and k be two fixed positive integers. Then, there is no one-one function from $[n+k]$ to $[n]$.

Proof. Suppose there exists a one-one function $f:[n+k] \rightarrow[n]$, for some n and k. Put $B=f([n+k])$. Then, notice that $f:[n+k] \rightarrow B$ is a bijection. But by Fact 1.2.23.6, $|B| \leq n<n+1$. Let $|B|=\ell$. Then, by definition, we get a bijection $h: B \rightarrow[\ell]$. Thus, using Fact 1.2.21.1, we get a bijection from $[n+k]$ to $[\ell]$. This contradicts Fact 1.2.21.4.
8. The set \mathbb{N} is infinite.

Proof. Assume that the set \mathbb{N} is finite and $|\mathbb{N}|=n$, for some natural number n. Let $f: \mathbb{N} \rightarrow[n]$ be a bijection. Then, $f_{[n+1]}$ is the restriction of f on $[n+1]$. Thus, by Proposition 1.2.15, $f_{[n+1]}$ is also one-one, contradicting Fact 1.2.23.7.
9. Let A be a finite nonempty set and x be a fixed symbol. Now, consider the set $B=$ $\{(x, a) \mid a \in A\}$. Then, $|A|=|B|$.

Proof. Define the function $f: A \rightarrow B$ by $f(a)=(x, a)$, for all $a \in A$. Then, f is a bijection.
10. Let A be an infinite set and $B \supseteq A$. Then, B is infinite.

Proof. If B is finite then by Fact $1.2 .23 .3, A$ is finite. A contradiction to A being an infinite set.
11. Let A be an infinite set and B be a finite set. Then, $A \backslash B$ is also infinite. In particular, if $a \in A$, then $A \backslash\{a\}$ is also infinite.

Proof. If $A \backslash B$ is finite, then by Fact 1.2.23.1, the set $(A \backslash B) \cup B$ is also finite. But $A \subseteq(A \backslash B) \cup B$ and hence by Fact 1.2.23.3 A is finite as well. A contradiction to A being an infinite set.
12. A set A is infinite if and only if there is a one-one function $f: \mathbb{N} \rightarrow A$.

Proof. Let A be infinite. So, $A \neq \emptyset$. Let $a_{1} \in A$. Put $f(1)=a_{1}$ and $A_{1}=A \backslash\left\{a_{1}\right\}$. By Fact 1.2.23.11, A_{1} is infinite. Assume that we have defined $f(1), \ldots, f(k)$ and obtained $A_{k}=A_{k-1} \backslash\left\{a_{k}\right\}$. As A_{k-1} was infinite, by Fact 1.2.23.11, A_{k} is infinite. Hence, $A_{k} \neq \emptyset$. Let $a_{k+1} \in A_{k}$. Define $f(k+1)=a_{k+1}$ and $A_{k+1}=A_{k} \backslash\left\{a_{k+1}\right\}$. By applying induction, f gets defined on \mathbb{N}. Notice that by construction $a_{k+1} \notin\left\{a_{1}, \ldots, a_{k}\right\}$. Hence, f is one-one.

Conversely, let $f: \mathbb{N} \rightarrow A$ be one-one. Then, $f: \mathbb{N} \rightarrow f(\mathbb{N})$ is a bijection. If $f(\mathbb{N})$ is finite then \mathbb{N} is finite as well, contradicting Fact 1.2.23.8. Hence, $f(\mathbb{N})$ is infinite. As $f(\mathbb{N}) \subseteq A$, using Fact 1.2.23.10, A is infinite as well.
13. A set is infinite if and only if it is equivalent to a proper subset of itself.

Proof. Let S be an infinite set. Then, by Fact 1.2.23.12, there is a one-one function $f: \mathbb{N} \rightarrow S$. Now define a map $g: S \rightarrow S \backslash\{f(1)\}$ by $g(x)= \begin{cases}x, & \text { if } x \notin f(\mathbb{N}) \\ f(k+1), & \text { if } x=f(k) .\end{cases}$ Then, g is indeed a bijection. Thus, S is equivalent to its proper subset $S \backslash\{f(1)\}$.
Conversely, let S be a set and T a proper subset of S such that there is a bijection $f: S \rightarrow T$. Suppose that S is finite and let $|S|=n$. Then, T is also finite and $|T|=m<n$. On the other hand, by the assumption that S is finite and there is a bijection from S to T, we have $m=n$, a contradiction.

EXERCISE 1.2.24. [Optional]

1. Do there exist unique sets X and Y such that $X \backslash Y=\{1,3,5,7\}$ and $Y \backslash X=\{2,4,8\}$?
2. In a class of 60 students, all the students play either football or cricket. If 20 students play both football and cricket, determine the number of players for each game if the number of students who play football is
(a) 14 more than the number of students who play cricket.
(b) exactly 5 times the number of students who play only cricket.
(c) a multiple of 2 and 3 and leaves a remainder 3 when divided by 5 .
(d) is a factor of 90 and the number of students who play cricket is a factor of 70.

1.3 More on principle of mathematical induction

The following is known as the 'principle of mathematical induction' in strong form.
Theorem 1.3.1. [Principle of mathematical induction (PMI): Strong form] Let $S \subseteq \mathbb{N}$ be a set which satisfies

1. $1 \in S$ and
2. $k+1 \in S$ whenever $[k] \subseteq S$ holds.

Then, $S=\mathbb{N}$.
Proof. Define $T=\{k \in S \mid[k] \subseteq S\}$. Then, $1 \in T$ as $1 \in S$ and $[1] \subseteq S$. Now, suppose $k \in T$. Then, by definition $[k] \subseteq S$. Therefore, the hypothesis implies that $k+1 \in S$ and hence $[k+1]=[k] \cup\{k+1\} \subseteq S$. Thus, $k+1 \in T$. Hence, by using the weak form of PMI on T, we conclude that $T=\mathbb{N}$, which in turn implies that $S=\mathbb{N}$.

Theorem 1.3.2. [Another form of PMI] Let $S \subseteq \mathbb{Z}$ be a set which satisfies

1. $k_{0} \in S$ and
2. $k+1 \in S$ whenever $\left\{k_{0}, k_{0}+1, \ldots, k\right\} \subseteq S$.

Then, $\left\{k_{0}, k_{0}+1, \ldots\right\} \subseteq S$.

Proof. Consider $T=\left\{x-\left(k_{0}-1\right) \mid x \in S, x \geq k_{0}\right\}$. Then, $1 \in T$ as $k_{0} \in S$ and $1=$ $k_{0}-\left(k_{0}-1\right)$. Now, let $[k] \subseteq T$. Then, $\left\{k_{0}, k_{0}+1, \ldots, k_{0}+k-1\right\} \subseteq S$. Hence, by the hypothesis, $\left(k_{0}+k-1\right)+1=k_{0}+k \in S$. Therefore, by definition of T, we have $k+1 \in T$ and hence using the strong form of PMI, $T=\mathbb{N}$. Thus, the required result follows.

The next result is commonly known as the Well-Ordering Principle which states that "every nonempty subset of natural numbers contains its least element".

Theorem 1.3.3. [Application of PMI in strong form: A nonempty subset of \mathbb{N} contains its minimum] Let $\emptyset \neq A \subseteq \mathbb{N}$. Then, the least element of A is a member of A.

Proof. For each fixed positive integer k, let $P(k)$ mean the statement 'each nonempty subset A of \mathbb{N} that contains k, also contains its minimum'.
Notice that $P(1)$ is true. Now, assume that $P(1), \ldots, P(k)$ are true. We need to show that $P(k+1)$ is true as well. Hence, consider a set A such that $k+1 \in A$. If $\{1, \ldots, k\} \cap A=\emptyset$, then $k+1=\min A$, we are done. If $r \in\{1, \ldots, k\} \cap A$, then $r \leq k$ and hence by induction hypothesis, $P(r)$ is true. So, $P(k+1)$ is true. Hence, by the strong form of PMI the required result follows.
By using Theorem 1.3.2, we can also prove the following generalization of Theorem 1.3.3. The proof is similar to the proof of Theorem 1.3.3 and is left to the reader.

Theorem 1.3.4. [Well-ordering principle] Fix $k \in \mathbb{Z}$. Let A be a nonempty subset of $\{k, k+$ $1, \ldots\}$. Then, A contains its minimum element.

Theorem 1.3.5. [Archimedean property for positive integers] Let $x, y \in \mathbb{N}$. Then, there exists $n \in \mathbb{N}$ such that $n x \geq y$.

Proof. On the contrary assume that such an $n \in \mathbb{N}$ does not exist. That is, $n x<y$ for every $n \in \mathbb{N}$. Now, consider the set $S=\left\{y-n x \mid n \in \mathbb{N}_{0}\right\}$. Then, $y \in S$ and hence S is a nonempty subset of \mathbb{N}_{0}. Therefore, by the well-ordering principle (Theorem 1.3.4), S contains its least element, say $y-m x$. Then, by assumption the integer $y-(m+1) x \geq 0, y-(m+1) x \in S$ and $y-(m+1) x<y-m x$. A contradicts to the minimality of $y-m x$. Thus, our assumption is invalid and hence the required result follows.
The next result gives the equivalence of the weak form of PMI with the strong form of PMI.
Theorem 1.3.6. [Equivalence of PMI in weak form and PMI in strong form] Fix a natural number k_{0} and let $P(n)$ be a statement about a natural number n. Suppose that P means the statement ' $P(n)$ is true, for each $n \in \mathbb{N}, n \geq k_{0}$ '. Then, ' P can be proved using the weak form of PMI' if and only if ' P can be proved using the strong form of PMI'.

Proof. Let us assume that the statement P has been proved using the weak form of PMI. Hence, $P\left(k_{0}\right)$ is true. Further, whenever $P(n)$ is true, we are able to establish that $P(n+1)$ is true. Therefore, we can establish that $P(n+1)$ is true if $P\left(k_{0}\right), \ldots, P(n)$ are true. Hence, P can be proved using the strong form of PMI.

So, now let us assume that the statement P has been proved using the strong form of PMI. Now, define $Q(n)$ to mean ' $P(\ell)$ holds for $\ell=k_{0}, k_{0}+1, \ldots, n$ '. Notice that $Q\left(k_{0}\right)$ is true. Suppose that $Q(n)$ is true (this means that $P(\ell)$ is true for $\left.\ell=k_{0}, k_{0}+1, \ldots, n\right)$. By hypothesis, we know that P has been proved using the strong form of PMI. That is, $P(n+1)$ is true whenever $P(\ell)$ is true for $\ell=k_{0}, k_{0}+1, \ldots, n$. This, in turn, means that $Q(n+1)$ is true. Hence, by the weak form of PMI, $Q(n)$ is true for all $n \geq k_{0}$. Thus, we are able to prove P using the weak form of PMI.

Theorem 1.3.7. [Optional: Application of PMI in weak form: AM-GM inequality] Fix a positive integer n and let $a_{1}, a_{2}, \ldots, a_{n}$ be non-negative real numbers. Then

$$
\text { Arithmetic Mean }(A M):=\frac{a_{1}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} \cdots a_{n}}=: \quad \text { (GM) Geometric Mean. }
$$

Proof. The inequality clearly holds for $n=1$ and 2 . Assume that it holds for every choice of n non-negative real numbers. Now, let $a_{1}, \ldots, a_{n}, a_{n+1}$ be a set of $n+1$ non-negative real numbers with $a_{1}=\max \left\{a_{1}, \ldots, a_{n+1}\right\}$ and $a_{n+1}=\min \left\{a_{1}, \ldots, a_{n+1}\right\}$. Define $A=\frac{a_{1}+a_{2}+\cdots+a_{n+1}}{n+1}$. Then, note that $a_{1} \geq A \geq a_{n+1}$. Hence, $\left(a_{1}-A\right)\left(A-a_{n+1}\right) \geq 0$, i.e., $A\left(a_{1}+a_{n+1}-A\right) \geq a_{1} a_{n+1}$. Now, apply induction hypothesis on the n non-negative real numbers $a_{2}, \ldots, a_{n}, a_{1}+a_{n+1}-A$ to get

$$
\sqrt[n]{a_{2} \cdots \cdots a_{n} \cdot\left(a_{1}+a_{n+1}-A\right)} \leq \frac{a_{2}+\cdots+a_{n}+\left(a_{1}+a_{n+1}-A\right)}{n}=A
$$

So, we have $A^{n+1} \geq\left(a_{2} \cdot a_{3} \cdots \cdot a_{n} \cdot\left(a_{1}+a_{n+1}-A\right)\right) \cdot A \geq\left(a_{2} \cdot a_{3} \cdots \cdot a_{n}\right) a_{1} a_{n+1}$. Therefore, by PMI, the inequality holds, for each $n \in \mathbb{N}$.
In the next example, we illustrate the use of PMI to establish some given identities (properties, statements) involving natural numbers.
Example 1.3.8. Prove that $1+2+\cdots+n=\frac{n(n+1)}{2}$.
Ans: The result is clearly true for $n=1$. So, let us assume that $1+2+\cdots+n=\frac{n(n+1)}{2}$. Then, using the induction hypothesis, we have

$$
1+2+\cdots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{n+1}{2}(n+2) .
$$

Thus, the result holds for $n+1$ and hence by the weak form of PMI, the result follows.
Exercise 1.3.9. [Optional] Prove using PMI.

1. $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
2. $1+3+\cdots+(2 n-1)=n^{2}$, for all $n \in \mathbb{N}$.
3. $n(n+1)$ is even, for all $n \in \mathbb{N}$.
4. 3 divides $n^{3}-n$, for all $n \in \mathbb{N}$.
5. 5 divides $n^{5}-n$, for all $n \in \mathbb{N}$.

Practice 1.3.10. [Wrong use of PMI: Can you find the error?] The following is an incorrect proof of 'if a set of n balls contains a green ball then all the balls in the set are green'. Find the error.

Proof. The statement holds trivially for $n=1$. Assume that the statement is true for $n \leq k$. Take a collection B_{k+1} of $k+1$ balls that contains at least one green ball. From B_{k+1}, pick a collection B_{k} of k balls that contains at least one green ball. Then, by the induction hypothesis, each ball in B_{k} is green. Now, remove one ball from B_{k} and put the ball which was left out in the beginning. Call it B_{k}^{\prime}. Again by induction hypothesis, each ball in B_{k}^{\prime} is green. Thus, each ball in B_{k+1} is green. Hence, by PMI, our proof is complete.

Exercise 1.3.11. [Optional]

1. Let $x \in \mathbb{R}$ with $x \neq 1$. Then, prove that $1+x+x^{2}+\cdots+x^{n}=\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}$.
2. Let $a, a+d, a+2 d, \ldots, a+(n-1) d$ be the first n terms of an arithmetic progression. Then,

$$
S=\sum_{i=0}^{n-1}(a+i d)=a+(a+d)+\cdots+(a+(n-1) d)=\frac{n}{2}(2 a+(n-1) d)
$$

3. Let $a, a r, a r^{2}, \ldots, a r^{n-1}$ be the first n terms of a geometric progression, with $r \neq 1$. Then, $S=a+a r+\cdots+a r^{n-1}=\sum_{i=0}^{n-1} a r^{i}=a \frac{r^{n}-1}{r-1}$.
4. Prove that
(a) 6 divides $n^{3}-n$, for all $n \in \mathbb{N}$.
(b) 7 divides $n^{7}-n$, for all $n \in \mathbb{N}$.
(c) 3 divides $2^{2 n}-1$, for all $n \in \mathbb{N}$.
(d) 9 divides $2^{2 n}-3 n-1$, for all $n \in \mathbb{N}$.
(e) 10 divides $n^{9}-n$, for all $n \in \mathbb{N}$.
(f) 12 divides $2^{2 n+2}-3 n^{4}+3 n^{2}-4$, for all $n \in \mathbb{N}$.
(g) $1^{3}+2^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.
5. Determine a formula for $1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+(n-1) \cdot n$ and prove it.
6. Determine a formula for $1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+3 \cdot 4 \cdot 5+\cdots+(n-1) \cdot n \cdot(n+1)$ and prove it.
7. Determine a formula for $1 \cdot 3 \cdot 5+2 \cdot 4 \cdot 6+\cdots+n \cdot(n+2) \cdot(n+4)$ and prove it.
8. [Informative] For all $n \geq 32$, there exist nonnegative integers x and y such that $n=$ $5 x+9 y$. [Hint: Prove it first for the starting 5 numbers.]
9. [Informative] Prove that, for all $n \geq 40$, there exist nonnegative integers x and y such that $n=5 x+11 y$.
10. For every positive integer $n \geq 5$ prove that $2^{n}>n^{2}>2 n+1$.
11. [Informative] Prove that for $\mu>0$,

$$
\prod_{l=1}^{p}(1+l \mu) \geq 1+\frac{p(p+1)}{2} \mu+\frac{1}{2}\left(\frac{p^{2}(p+1)^{2}}{4}-\frac{p(p+1)(2 p+1)}{6}\right) \mu^{2}
$$

12. [Informative] By an L-shaped piece, we mean a piece of the type shown in the picture. Consider a $2^{n} \times 2^{n}$ square with one unit square cut. See picture.

4×4 square with a unit square cut

Show that a $2^{n} \times 2^{n}$ square with one unit square cut, can be covered with L-shaped pieces.
13. [Informative] Verify that $(k+1)^{5}-k^{5}=5 k^{4}+10 k^{3}+10 k^{2}+5 k+1$. Now, put $k=1,2, \ldots, n$ and add to get $(n+1)^{5}-1=5 \sum_{k=1}^{n} k^{4}+10 \sum_{k=1}^{n} k^{3}+10 \sum_{k=1}^{n} k^{2}+5 \sum_{k=1}^{n} k+\sum_{k=1}^{n} 1$. Now, use the formula's for $\sum_{k=1}^{n} k^{3}, \sum_{k=1}^{n} k^{2}, \sum_{k=1}^{n} k$ and $\sum_{k=1}^{n} 1$ to get a expression for $\sum_{k=1}^{n} k^{4}$.

14. [Informative: A general result than AM-GM]

(a) Let a_{1}, \ldots, a_{9} be nonnegative real numbers such that the sum $a_{1}+\cdots+a_{9}=5$. Assume that $a_{1} \neq a_{2}$. Consider $\frac{a_{1}+a_{2}}{2}, \frac{a_{1}+a_{2}}{2}, a_{3}, \ldots, a_{9}$. Argue that $a_{1} \cdots a_{9} \leq$ $\left(\frac{a_{1}+a_{2}}{2}\right)^{2} a_{3} \cdots a_{9}$.
(b) Let a_{1}, \ldots, a_{n} be any nonnegative real numbers such that the sum $a_{1}+\cdots+a_{n}=r_{0}$. Argue that the highest value of $a_{1} \cdots a_{n}$ is obtained when $a_{1}=\cdots=a_{n}=r_{0} / n$.
(c) Let a_{1}, \ldots, a_{n} be fixed nonnegative real numbers such that the sum $a_{1}+\cdots+a_{n}=r_{0}$. Conclude from the previous item that $\left(r_{0} / n\right)^{n} \geq a_{1} \cdots a_{n}$, the AM-GM inequality.
15. Prove Theorem 1.3.6.

1.4 Integers

In this section, we study some properties of integers. We start with the 'division algorithm'.
Lemma 1.4.1. [Division algorithm] Let a and b be two integers with $b>0$. Then, there exist unique integers q, r such that $a=q b+r$, where $0 \leq r<b$. The integer q is called the quotient and r, the remainder.

Proof. Existence: Take $S=\{a+b x \mid x \in \mathbb{Z}\} \cap \mathbb{N}_{0}$. Then, $a+|a| b \in S$. Hence, S is a nonempty subset of \mathbb{N}_{0}. Therefore, by the Well-Ordering Principle, S contains its minimum, say s_{0}. So, $s_{0}=a+b x_{0}$, for some $x_{0} \in \mathbb{Z}$. Notice that $s_{0} \geq 0$. We claim that $s_{0}<b$.
If $s_{0} \geq b$ then $s_{0}-b \geq 0$ and hence $s_{0}-b=a+b\left(x_{0}-1\right) \in S$, a contradiction to s_{0} being the minimum element of S. Put $q=-x_{0}$ and $r=s_{0}$. Thus, we have obtained q and r such that $a=q b+r$ with $0 \leq r<b$.

Uniqueness: Assume that there exist integers q_{1}, q_{2}, r_{1} and r_{2} satisfying $a=q_{1} b+r_{1}, 0 \leq r_{1}<b$, $a=q_{2} b+r_{2}$ and $0 \leq r_{2}<b$. Without loss of generality, we assume $r_{1} \leq r_{2}$. Then, $0 \leq r_{2}-r_{1}<b$. Notice that $r_{2}-r_{1}=\left(q_{1}-q_{2}\right) b$. So, $0 \leq\left(q_{1}-q_{2}\right) b<b$. But the only integer multiple of b which lies in $[0, b)$ is 0 . Hence, $q_{1}-q_{2}=0$. Thus, $r_{1}=r_{2}$ as well. This completes the proof.

Definition 1.4.2. [Divisibility]

1. [Divisor] Let $a, b \in \mathbb{Z}$ with $b \neq 0$. If $a=b c$, for some $c \in \mathbb{Z}$ then b is said to divide (be a divisor of) a and is denoted $b \mid a$.

Discussion: If a is a nonzero integer then the set of positive divisors of a is always nonempty (as $1 \mid a$) and finite (as a positive divisor of a is less than or equal to $|a|$).
2. [Greatest common divisor] Let a and b be two nonzero integers. Then, the set S of their common positive divisors is nonempty and finite. Thus, S contains its greatest element. This element is called the greatest common divisor of a and b and is denoted $\operatorname{gcd}(a, b)$. On similar lines one can define the greatest common divisor of non-zero integers $a_{1}, a_{2}, \ldots, a_{n}$ as the largest positive integer that divides each of $a_{1}, a_{2}, \ldots, a_{n}$, denoted $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$.
3. [Relatively prime/Co-prime integers] An integer a is said to be relatively prime to an integer b if $\operatorname{gcd}(a, b)=1$. Or, two integers a and b are said to be co-prime if $\operatorname{gcd}(a, b)=1$.

The next remark follows directly from the definition and the division algorithm.
Remark 1.4.3. Let $a, b \in \mathbb{Z} \backslash\{0\}$ and $d=\operatorname{gcd}(a, b)$. Then, for any positive common divisor c of a and b, one has $c \mid d$.

The next result is often stated as 'the $\operatorname{gcd}(a, b)$ is an integer linear combination of a and b '.
Theorem 1.4.4. [Bézout's identity] Let a and b be two nonzero integers. Then, there exist integers x_{0}, y_{0} such that $d=a x_{0}+b y_{0}$, where $d=\operatorname{gcd}(a, b)$.

Proof. Consider the set $S=\{a x+b y \mid x, y \in \mathbb{Z}\} \cap \mathbb{N}$. Then, either $a \in S$ or $-a \in S$. Thus, S is a nonempty subset of \mathbb{N}. Hence, by the Well-ordering principle, S contains its least element, say d. As $d \in S$, we have $d=a x_{0}+b y_{0}$, for some $x_{0}, y_{0} \in \mathbb{Z}$. We claim that $d=\operatorname{gcd}(a, b)$.
Note that d is positive. Let c be any positive common divisor of a and b. Then, $c \mid a x_{0}+b y_{0}=d$ as $x_{0}, y_{0} \in \mathbb{Z}$. We now show that $d \mid a$ and $d \mid b$.
By division algorithm, there exist integers q and r such that $a=d q+r$, with $0 \leq r<d$. Thus, we need to show that $r=0$.
On the contrary, assume that $r>0$. Then

$$
r=a-d q=a-q\left(a x_{0}+b y_{0}\right)=a\left(1-q x_{0}\right)+b\left(-q y_{0}\right) \in\{a x+b y \mid x, y \in \mathbb{Z}\} .
$$

Hence, r is a positive integer in S which is strictly less than d. This contradicts the fact that d is the least element of S. Thus, $r=0$ and hence $d \mid a$. Similarly, $d \mid b$.
The division algorithm gives us an idea to algorithmically compute the greatest common divisor of two integers, commonly known as the Euclid's algorithm.

Discussion 1.4.5. 1. Let $a, b \in \mathbb{Z} \backslash\{0\}$. By division algorithm, $a=|b| q+r$, for some integers $q, r \in \mathbb{Z}$ with $0 \leq r<|b|$. Then,

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a,|b|)=\operatorname{gcd}(|b|, r) .
$$

To show the second equality, note that $r=a-|b| q$ and hence $\operatorname{gcd}(a,|b|) \mid r$. Thus, $\operatorname{gcd}(a,|b|) \mid \operatorname{gcd}(|b|, r)$. Similarly, $\operatorname{gcd}(|b|, r) \mid \operatorname{gcd}(a,|b|)$ as $a=|b| q+r$.
2. We can now apply the above idea repeatedly to find the greatest common divisor of two given nonzero integers. This is called the Euclid's algorithm. For example, to find $\operatorname{gcd}(155,-275)$, we proceed as follows

$$
\begin{aligned}
-275 & =(-2) \cdot 155+35 & & (\text { so, } \operatorname{gcd}(-275,155)=\operatorname{gcd}(155,35)) \\
155 & =4 \cdot 35+15 & & (\text { so, } \operatorname{gcd}(155,35)=\operatorname{gcd}(35,15)) \\
35 & =2 \cdot 15+5 & & (\text { so, } \operatorname{gcd}(35,15)=\operatorname{gcd}(15,5)) \\
15 & =3 \cdot 5 & & (\text { so, } \operatorname{gcd}(15,5)=5) .
\end{aligned}
$$

To write $5=\operatorname{gcd}(155,-275)$ in the form $155 x_{0}+(-275) y_{0}$, notice that
$5=35-2 \cdot 15=35-2(155-4 \cdot 35)=9 \cdot 35-2 \cdot 155=9(-275+2 \cdot 155)-2 \cdot 155=9 \cdot(-275)+16 \cdot 155$.
Also, note that $275=5 \cdot 55$ and $155=5 \cdot 31$ and thus, $5=(9+31 x) \cdot(-275)+(16+55 x) \cdot 155$, for all $x \in \mathbb{Z}$. Therefore, we see that there are infinite number of choices for the pair $(x, y) \in \mathbb{Z}^{2}$, for which $d=a x+b y$.
3. [Euclid's algorithm] In general, given two nonzero integers a and b, the algorithm proceeds as follows:

$$
\begin{aligned}
a & =b q_{0}+r_{0} \text { with } 0 \leq r_{0}<b, & & b=r_{0} q_{1}+r_{1} \text { with } 0 \leq r_{1}<r_{0}, \\
r_{0} & =r_{1} q_{2}+r_{2} \text { with } 0 \leq r_{2}<r_{1}, & & r_{1}=r_{2} q_{3}+r_{3} \text { with } 0 \leq r_{3}<r_{2}, \\
\vdots & =\vdots & & \\
r_{\ell-1} & =r_{\ell} q_{\ell+1}+r_{\ell+1} \text { with } 0 \leq r_{\ell+1}<r_{\ell}, & & r_{\ell}=r_{\ell+1} q_{\ell+2} .
\end{aligned}
$$

The process will take at most $b-1$ steps as $0 \leq r_{0}<b$. Also, note that $\operatorname{gcd}(a, b)=r_{\ell+1}$ and $r_{\ell+1}$ can be recursively obtained, using backtracking. That is,

$$
r_{\ell+1}=r_{\ell-1}-r_{\ell} q_{\ell+1}=r_{\ell-1}-q_{\ell+1}\left(r_{\ell-2}-r_{\ell-1} q_{\ell}\right)=r_{\ell-1}\left(1+q_{\ell+1} q_{\ell}\right)-q_{\ell+1} r_{\ell-2}=\cdots .
$$

Exercise 1.4.6. 1. Let $a, b, c \in \mathbb{N}$. Then, prove the following:
(a) If $\operatorname{gcd}(a, b)=d$, then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
(b) If $\operatorname{gcd}(a, b)=d$, then $\operatorname{gcd}\left(a^{n}, b^{n}\right)=d^{n}$ for all $n \in \mathbf{N}$.
(c) $\operatorname{gcd}(a, b c)=1$ if and only if $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$
(d) If $\operatorname{gcd}(b, c)=1$, then $\operatorname{gcd}(a, b c)=\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(a, c)$.
2. Prove that the system $15 x+12 y=b$ has a solution for $x, y \in \mathbb{Z}$ if and only if 3 divides b.
3. [Diophantine Equation] Let $a, b, c \in \mathbb{Z} \backslash\{0\}$. Then, the linear system $a x+b y=c$, in the unknowns $x, y \in \mathbb{Z}$ has a solution if and only if $\operatorname{gcd}(a, b)$ divides c. Furthermore, determine all pairs $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ such that $a x+b y$ is indeed c.
4. Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{N}$. Then, prove that $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, a_{2}\right), a_{3}, \ldots, a_{n}\right)$.
5. Euclid's algorithm can sometimes be applied to check whether two numbers which are functions of an unknown integer n, are relatively prime or not? For example, we can use the algorithm to prove that $\operatorname{gcd}(2 n+3,5 n+7)=1$ for every $n \in \mathbb{Z}$.
6. [Informative] Suppose a milkman has only 3 cans of sizes 7, 9 and 16 liters. What is the minimum number of operations required to deliver 1 liter of milk to a customer? Explain.

To proceed further, we need the following definitions.

Definition 1.4.7. [Prime/Composite numbers]

1. [unity] The positive integer 1 is called the unity (or the unit element) of \mathbb{Z}.
2. [prime] A positive integer p is said to be a prime, if p has exactly two positive divisors, namely, 1 and p.
3. [composite] A positive integer r is called composite if $r \neq 1$ and is not a prime.

We are now ready to prove an important result that helps us in proving the fundamental theorem of arithmetic.

Lemma 1.4.8. [Euclid's lemma] Let p be a prime and let $a, b \in \mathbb{Z}$. If $p \mid a b$ then either $p \mid a$ or $p \mid b$.

Proof. If $p \mid a$, we are done. So, assume that $p \nmid a$. As p is a prime, $\operatorname{gcd}(p, a)=1$. Thus, we can find integers x, y such that $1=a x+p y$. As $p \mid a b$, we have

$$
p \mid a b x+p b y=b(a x+p y)=b \cdot 1=b .
$$

Thus, if $p \mid a b$ then either $p \mid a$ or $p \mid b$.
As a repeated application of Lemma 1.4.8, we have the following result and hence the proof is omitted.

Corollary 1.4.9. Let n be an integer such that $n \mid a b$ and $\operatorname{gcd}(n, a)=1$. Then, $n \mid b$.
Now, we are ready to prove the fundamental theorem of arithmetic that states that 'every positive integer greater than 1 is either a prime or is a product of primes. This product is unique, except for the order in which the prime factors appear'.

Theorem 1.4.10. [Fundamental theorem of arithmetic] Let $n \in \mathbb{N}$ with $n \geq 2$. Then, there exist prime numbers $p_{1}>p_{2}>\cdots>p_{k}$ and positive integers $s_{1}, s_{2}, \ldots, s_{k}$ such that $n=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}$, for some $k \geq 1$. Moreover, if n also equals $q_{1}^{t_{1}} q_{2}^{t_{2}} \cdots q_{\ell}^{t_{\ell}}$, for distinct primes $q_{1}>q_{2}>\cdots>q_{\ell}$ and positive integers $t_{1}, t_{2}, \ldots, t_{\ell}$ then $k=\ell$ and for each $i, 1 \leq i \leq k, p_{i}=q_{i}$ and $s_{i}=t_{i}$.

Proof. We prove the result using the strong form of the principle of mathematical induction. The result is clearly true for $n=2$. So, let the result be true for all $m, 2 \leq m \leq n-1$. If n is a prime, then we have nothing to prove. Else, n has a prime divisor p. Then, apply induction on $\frac{n}{p}$ to get the required result.

Theorem 1.4.11. [Euclid: Infinitude of primes] The number of primes is infinite.
Proof. On the contrary assume that the number of primes is finite, say $p_{1}=2, p_{2}=3, \ldots, p_{k}$. Now, consider the positive integer $N=p_{1} p_{2} \cdots p_{k}+1$. Then, we see that none of the primes $p_{1}, p_{2}, \ldots, p_{k}$ divides N which contradicts Theorem 1.4.10. Thus, the result follows.

Proposition 1.4.12. [Primality testing] Let $n \in \mathbb{N}$ with $n \geq 2$. Suppose that for any prime $p \leq \sqrt{n}, p$ does not divide n, then n is prime.

Proof. Suppose $n=x y$, for $2 \leq x, y<n$. Then, either $x \leq \sqrt{n}$ or $y \leq \sqrt{n}$. Without loss of generality, assume $x \leq \sqrt{n}$. If x is a prime, we are done. Else, take a prime divisor of x to get a contradiction.

Exercise 1.4.13. [Informative] Prove that there are infinitely many primes of the form $4 n-1$.
Definition 1.4.14. [Least common multiple] Let $a, b \in \mathbb{Z}$. Then, the least common multiple of a and b, denoted $\operatorname{Icm}(a, b)$, is the smallest positive integer that is a multiple of both a and b.

Theorem 1.4.15. Let $a, b \in \mathbb{N}$. Then, $\operatorname{gcd}(a, b) \cdot \operatorname{Icm}(a, b)=a b$. Thus, $\operatorname{Icm}(a, b)=a b$ if and only if $\operatorname{gcd}(a, b)=1$.

Proof. Let $d=\operatorname{gcd}(a, b)$. Then, $d=a s+b t$, for some $s, t \in \mathbb{Z}, a=a_{1} d, b=b_{2} d$, for some $a_{1}, b_{1} \in \mathbb{N}$. We need to show that $\operatorname{Icm}(a, b)=a_{1} b_{1} d=a b_{1}=a_{1} b$, which is clearly a multiple of both a and b. Let $c \in \mathbb{N}$ be any common multiple of a and b. To show, $a_{1} b_{1} d$ divides c. Note that

$$
\frac{c}{a_{1} b_{1} d}=\frac{c d}{\left(a_{1} d\right) \cdot\left(b_{1} d\right)}=\frac{c(a s+b t)}{a b}=\frac{c}{b} s+\frac{c}{a} t \in \mathbb{Z}
$$

as $\frac{c}{a}, \frac{c}{b} \in \mathbb{Z}$ and $s, t \in \mathbb{Z}$. Thus, $a_{1} b_{1} d=\operatorname{Icm}(a, b)$ divides c and hence $\operatorname{Icm}(a, b)$ is indeed the smallest. Thus, the required result follows.

Definition 1.4.16. [Modular Arithmetic] Fix a positive integer n. Then, 'an integer a is said to be congruent to an integer b modulo n^{\prime}, denoted $a \equiv b(\bmod n)$, if n divides $a-b$.
Example 1.4.17. 1. It can be easily verified that any two even (odd) integers are equivalent modulo 2 as $2 \mid 2(l-m)=2 l-2 m(2 \mid 2(l-m)=((2 l+1)-(2 m+1)))$.
2. The numbers ± 10 and 22 are equivalent modulo 4 as $4 \mid 12=22-10$ and $4 \mid 32=$ $22-(-10)$.
3. Let n be a fixed positive integer and let $S=\{0,1,2, \ldots, n-1\}$.
(a) Then, by division algorithm, for any $a \in \mathbb{Z}$ there exists a unique $b \in S$ such that $a \equiv b(\bmod n)$. The number b is called the residue of a modulo n.
(b) Thus, the set of integers, $\mathbb{Z}=\bigcup_{a=0}^{n-1}\{a+k n: k \in \mathbb{Z}\}$, i.e., every integer is congruent to an element of S. The set S is taken as the standard representative for the set of residue classes modulo n.

Theorem 1.4.18. Let n be a positive integer. Then, the following results hold.

1. Let $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, for some $a, b, c \in \mathbb{Z}$. Then, $a \equiv c(\bmod n)$.
2. Let $a \equiv b(\bmod n)$, for some $a, b \in \mathbb{Z}$. Then, $a \pm c \equiv b \pm c(\bmod n)$ and $a c \equiv b c(\bmod n)$, for all $c \in \mathbb{Z}$.
3. Let $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, for some $a, b, c, d \in \mathbb{Z}$. Then, $a \pm c \equiv b \pm d(\bmod n)$ and $a c \equiv b d(\bmod n)$. In particular, $a^{m} \equiv b^{m}(\bmod n)$, for all $m \in \mathbb{N}$.
4. Let $a c \equiv b c(\bmod n)$, for some non-zero $a, b, c \in \mathbb{Z}$. Then, $a \equiv b(\bmod n)$, whenever $\operatorname{gcd}(c, n)=1$. In general, $a \equiv b\left(\bmod \frac{n}{\operatorname{gcd}(c, n)}\right)$.
Proof. We will only prove two parts. The readers should supply the proof of other parts.
Part 3: Note that $a c-b d \equiv a c-b c+b c-b d \equiv c(a-b)+b(c-d)$. Thus, $n \mid a c-b d$, whenever $n \mid a-b$ and $n \mid c-d$.
In particular, taking $c=a$ and $d=b$ and repeatedly applying the above result, one has $a^{m} \equiv b^{m}(\bmod n)$, for all $m \in \mathbb{N}$.
Part 4: Let $\operatorname{gcd}(c, n)=d$. Then, there exist non-zero $c_{1}, n_{1} \in \mathbb{Z}$ and $c=c_{1} d, n=n_{1} d$. Thus, $n \mid a c-b c$ means that $n_{1} d \mid c_{1} d(a-b)$. This, in turn implies that $n_{1} \mid c_{1}(a-b)$. Hence, by Corollary 1.4.9, we get $\left.\frac{n}{\operatorname{gcd}(c, n)}=n_{1} \right\rvert\, a-b$.
Before coming to the next result, we look at the following examples.
Example 1.4.19. 1. Note that $3 \cdot 9+13 \cdot(-2) \equiv 1(\bmod 13)$. So, the system $9 x \equiv 4$ $(\bmod 13)$ has the solution

$$
x \equiv x \cdot 1 \equiv x \cdot(3 \cdot 9+13 \cdot(-2)) \equiv 3 \cdot 9 x \equiv 3 \cdot 4 \equiv 12 \quad(\bmod 13) .
$$

2. Verify that $9 \cdot(-5)+23 \cdot(2)=1$. Hence, the system $9 x \equiv 1(\bmod 23)$ has the solution

$$
x \equiv x \cdot 1 \equiv x(9 \cdot(-5)+23 \cdot(2)) \equiv(-5) \cdot(9 x) \equiv-5 \equiv 18 \quad(\bmod 23) .
$$

3. The system $3 x \equiv 15(\bmod 30)$ has solutions $x=5,15,25$, whereas the system $7 x=15$ has only the solution $x=15$. Also, verify that the system $3 x \equiv 5(\bmod 30)$ has no solution.

Theorem 1.4.20. [Linear Congruence] Let n be a positive integer and let a and b be non-zero integers. Then, the system $a x \equiv b(\bmod n)$ has at least one solution if and only if $\operatorname{gcd}(a, n) \mid b$. Moreover, if $d=\operatorname{gcd}(a, n)$ then $a x \equiv b(\bmod n)$ has exactly d solutions in $\{0,1,2, \ldots, n-1\}$.

Proof. Let x_{0} be a solution of $a x \equiv b(\bmod n)$. Then, by definition, $a x_{0}-b=n q$, for some $q \in \mathbb{Z}$. Thus, $b=a x_{0}-n q$. But, $\operatorname{gcd}(a, n) \mid a, n$ and hence $\operatorname{gcd}(a, n) \mid a x_{0}-n q=b$.
Suppose $d=\operatorname{gcd}(a, n) \mid b$. Then, $b=b_{1} d$, for some $b_{1} \in \mathbb{Z}$. Also, by Euclidean algorithm, there exists $x_{0}, y_{0} \in \mathbb{Z}$ such that $a x_{0}+n y_{0}=d$. Hence,

$$
a\left(x_{0} b_{1}\right) \equiv b_{1}\left(a x_{0}\right) \equiv b_{1}\left(a x_{0}+n y_{0}\right) \equiv b_{1} d \equiv b \quad(\bmod n) .
$$

This completes the proof of the first part.
To proceed further, assume that x_{1}, x_{2} are two solutions. Then, $a x_{1} \equiv a x_{2}(\bmod n)$ and hence, by Theorem 1.4.18.4, $x_{1} \equiv x_{2}\left(\bmod \frac{n}{d}\right)$. Thus, we can find $x_{2} \in\left\{0,1, \ldots, \frac{n}{d}\right\}$ such that $x=x_{2}+k \frac{n}{d}$ is a solution of $a x \equiv b(\bmod n)$, for $0 \leq k \leq d-1$. Verify that these x 's are distinct and lie between 0 and $n-1$. Hence, the required result follows.

Exercise 1.4.21. 1. Prove Theorem 1.4.18.
2. Determine the solutions of the system $3 x \equiv 5(\bmod 65)$.
3. Determine the solutions of the system $5 x \equiv 95(\bmod 100)$.
4. Prove that the system $3 x \equiv 4(\bmod 28)$ is equivalent to the system $x \equiv 20(\bmod 28)$.
5. Prove that the pair of systems $3 x \equiv 4(\bmod 28)$ and $4 x \equiv 2(\bmod 27)$ is equivalent to the pair $x \equiv 20(\bmod 28)$ and $x \equiv 14(\bmod 27)$. Hence, prove that the above system is equivalent to solving either $20+28 k \equiv 14(\bmod 27)$ or $14+27 k \equiv 20(\bmod 28)$ for the unknown quantity k. Thus, verify that $k=21$ is the solution for the first case and $k=22$ for the other. Hence, $x=20+28 \cdot 21=608=14+22 \cdot 27$ is a solution of the above pair.
6. Let p be a prime. Then, prove that $p \left\lvert\,\binom{ p}{k}=\frac{p!}{k!(p-k)!}\right.$, for $1 \leq k \leq p-1$.
7. [Informative] Let p be a prime. Then, the set
(a) $\mathbb{Z}_{p}=\{0,1,2, \ldots, p-1\}$ has the following properties:
i. for every $a, b \in \mathbb{Z}_{p}, a+b(\bmod p) \in \mathbb{Z}_{p}$.
ii. for every $a, b \in \mathbb{Z}_{p}, a+b=b+a(\bmod p)$.
iii. for every $a, b, c \in \mathbb{Z}_{p}, a+(b+c) \equiv(a+b)+c(\bmod p)$.
$i v$. for every $a \in \mathbb{Z}_{p}, a+0 \equiv a(\bmod p)$.
v. for every $a \in \mathbb{Z}_{p}, a+(p-a) \equiv 0(\bmod p)$.
(b) $\mathbb{Z}_{p}^{*}=\{1,2, \ldots, p-1\}$ has the following properties:
i. for every $a, b \in \mathbb{Z}_{p}, a \cdot b(\bmod p) \in \mathbb{Z}_{p}^{*}$.
ii. for every $a, b \in \mathbb{Z}_{p}^{*}, a \cdot b=b \cdot a(\bmod p)$.
iii. for every $a, b, c \in \mathbb{Z}_{p}^{*}, a \cdot(b \cdot c) \equiv(a \cdot b) \cdot c(\bmod p)$.
iv. for every $a \in \mathbb{Z}_{p}^{*}, a \cdot 1 \equiv a(\bmod p)$.
v. for every $a \in \mathbb{Z}_{p}^{*}, a \cdot b \equiv 1(\bmod p)$. To see this, note that $\operatorname{gcd}(a, p)=1$. Hence, by Euclid's algorithm, there exists $x, y \in \mathbb{Z}$ such that $a x+p y=1$. Define $b \equiv x$ $(\bmod p)$. Then,

$$
a \cdot b \equiv a \cdot x \equiv a \cdot x+p \cdot y \equiv 1 \quad(\bmod p) .
$$

In algebra, any set, say \mathbb{F}, in which 'addition' and 'multiplication' can be defined in such a way that the above properties are satisfied then \mathbb{F} is called a field. So, $\mathbb{Z}_{p}=\{0,1,2, \ldots, p-1\}$ is an example of a field. In general, the well known examples of fields are:
i. \mathbb{Q}, the set of rational numbers.
ii. \mathbb{R}, the set of real numbers.
iii. \mathbb{C}, the set of complex numbers.
(c) From now on let p be an odd prime.
i. Then, the equation $x^{2} \equiv 1(\bmod p)$. Since, p is a prime, the only solutions in \mathbb{Z}_{p} are $x=1, p-1$.
ii. Then, for $a \in\{2,3, \ldots, p-2\}$, the number $b \in \mathbb{Z}_{p}^{*}$ that satisfies $a \cdot b \equiv 1(\bmod p)$ also satisfies $b \in\{2,3, \ldots, p-2\}$ and $b \neq a$.
iii. Thus, for $1 \leq i \leq \frac{p-1}{2}$, we have pairs $\left\{a_{i}, b_{i}\right\}$ that are pairwise disjoint and satisfy $a_{i} \cdot b_{i} \equiv 1(\bmod p)$. Moreover, $\bigcup_{i=1}^{\frac{p-1}{2}}\left\{a_{i}, b_{i}\right\}=\{2,3, \ldots, p-2\}$.
iv. Hence, $2 \cdot 3 \cdots \cdots(p-2) \equiv 1(\bmod p)$.
v. We thus have the following famous theorem called the Wilson's Theorem: Let p be a prime. Then, $(p-1)!\equiv-1(\bmod p)$. Proof. Note that from the previous step, we have

$$
(p-1)!\equiv 1 \cdot(p-1) \cdot 2 \cdot 3 \cdots \cdots(p-2) \equiv-1 \cdot 1 \equiv-1 \quad(\bmod p) .
$$

vi. [Primality Testing] Let n be a positive integer. Then, $(n-1)!\equiv-1(\bmod n)$ if and only if n is a prime.

Theorem 1.4.22. [Chinese remainder theorem] Fix a positive integer m and let $n_{1}, n_{,} \ldots, n_{m}$ be pairwise co-prime positive integers. Then, the linear system

$$
\begin{array}{ll}
x \equiv a_{1} & \left(\bmod n_{1}\right) \\
x \equiv a_{2} & \left(\bmod n_{2}\right) \\
\vdots & \\
x \equiv a_{m} & \left(\bmod n_{m}\right)
\end{array}
$$

has a unique solution modulo $N=n_{1} n_{2} \cdots n_{m}$.
Proof. For $1 \leq k \leq m$, define $M_{k}=\frac{M}{n_{k}}$. Then, $\operatorname{gcd}\left(M_{k}, n_{k}\right)=1$ and hence there exist integers x_{k}, y_{k} such that $M_{k} x_{k}+n_{k} y_{k}=1$ for $1 \leq k \leq m$. Then,

$$
M_{k} x_{k} \equiv 1 \quad\left(\bmod n_{k}\right) \text { and } M_{k} x_{k} \equiv 0 \quad\left(\bmod n_{\ell}\right) \text { for } \ell \neq k .
$$

Define $x_{0}=\sum_{k=1}^{m} M_{k} x_{k} a_{k}$. Then, it can be easily verified that x_{0} satisfies the required congruence relations.

Example 1.4.23. 1. Let us come back to Exercise 1.4.21.5. In this case, $M=28 \cdot 27=$ $756, M_{1}=27$ and $M_{2}=28$. Therefore, $x_{1}=-1$ and $x_{2}=1$. Thus,

$$
x_{0}=27 \cdot-1 \cdot 20+28 \cdot 1 \cdot 14 \equiv-540+392 \equiv-148 \equiv 608 \quad(\bmod 756) .
$$

2. Let x be a number which when divided by 8,15 and 17 gives remainders 5,6 and 8 , respectively. Then, what will be the remainder when x is divided by 2040 ?

Ans: Note that $M=2040, M_{1}=255, M_{2}=136$ and $M_{3}=120$ with

$$
8 \cdot 32+(-1) \cdot 255=1,1 \cdot 136+(-9) 15=1 \text { and } 1 \cdot 120+(-7) \cdot 17=1
$$

Hence, the required remainder is $5 \cdot(-255)+6 \cdot 136+8 \cdot 120=501$.
Exercise 1.4.24. 1. Find the smallest positive integer which when divided by 4 leaves a remained 1 and when divided by 9 leaves a remainder 2 .
2. Find the smallest positive integer which when divided by 8 leaves a remained 4 and when divided by 15 leaves a remainder 10 .
3. Does there exist a positive integer n such that

$$
n \equiv 4 \quad(\bmod 14), \quad n \equiv 6 \quad(\bmod 18) ?
$$

Give reasons for your answer. What if we replace 6 or 4 with an odd number?
4. [Informative] Let n be a positive integer. Then, the set
(a) $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ has the following properties:
i. for every $a, b \in \mathbb{Z}_{n}, a+b(\bmod n) \in \mathbb{Z}_{n}$.
ii. for every $a, b \in \mathbb{Z}_{n}, a+b=b+a(\bmod n)$.
iii. for every $a, b, c \in \mathbb{Z}_{n}, a+(b+c) \equiv(a+b)+c(\bmod n)$.
iv. for every $a \in \mathbb{Z}_{n}, a+0 \equiv a(\bmod n)$.
v. for every $a \in \mathbb{Z}_{n}, a+(p-a) \equiv 0(\bmod n)$.
vi. for every $a, b \in \mathbb{Z}_{n}, a \cdot b(\bmod n) \in \mathbb{Z}_{n}$.
vii. for every $a, b \in \mathbb{Z}_{n}, a \cdot b=b \cdot a(\bmod n)$.
viii. for every $a, b, c \in \mathbb{Z}_{n}, a \cdot(b \cdot c) \equiv(a \cdot b) \cdot c(\bmod n)$.
ix. for every $a \in \mathbb{Z}_{n}, a \cdot 1 \equiv a(\bmod n)$.

In algebra, any set, say \mathcal{R}, in which 'addition' and 'multiplication' can be defined in such a way that the above properties are satisfied then \mathcal{R} is called a commutative ring with unity. So, $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ is an example of a commutative ring with unity. In general, the well known examples of commutative ring with unity are:
i. \mathbb{Z}, the set of integers.
ii. \mathbb{Q}, the set of rational numbers.
iii. \mathbb{R}, the set of real numbers.
$i v . \mathbb{C}$, the set of complex numbers.
(b) Now, let m and n be two co-prime positive integers. Then, by the above, the sets $\mathbb{Z}_{m}, \mathbb{Z}_{n}$, and $\mathbb{Z}_{m n}$ are commutative rings with unity. In the following, we show that there is a one-to-one correspondence (ring isomorphism) between $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ and $\mathbb{Z}_{m n}$. To do so, define

$$
f: \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n} \text { by } f(x)=(x \quad(\bmod m), x \quad(\bmod n)) \text { for all } x \in \mathbb{Z}_{m n}
$$

Then, defining 'addition' and 'multiplication' in $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ componentwise and using Theorem 1.4.18, we have the following:
i. $f(x+y)=f(x)+f(y)$, for all $x, y \in \mathbb{Z}_{m n}$.
ii. $f(x \cdot y)=f(x) \cdot f(y)$, for all $x, y \in \mathbb{Z}_{m n}$.
iii. for every $(a, b) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$, by CRT, there exists a unique $x \in \mathbb{Z}_{m n}$ such that

$$
x \equiv a \quad(\bmod m) \text { and } x \equiv b \quad(\bmod n) .
$$

iv. also, $\left|\mathbb{Z}_{m} \times \mathbb{Z}_{n}\right|=\left|\mathbb{Z}_{m n}\right|=m n$..

Hence, we have obtained the required one-one correspondence, commonly known as the ring isomorphism. That is, the two rings $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ and $\mathbb{Z}_{m n}$ are isomorphic.

Chapter 2

Advanced topics in set theory

2.1 Families of Sets

Definition 2.1.1. Let A be a set. For each $x \in A$, take a new set A_{x}. Then, the collection $\left\{\boldsymbol{A}_{\boldsymbol{x}}\right\}_{\boldsymbol{x} \in \boldsymbol{A}}:=\left\{A_{x} \mid x \in A\right\}$ is a family of sets indexed by elements of A (index set). Unless otherwise mentioned, we assume that the index set for a class of sets is nonempty.

Definition 2.1.2. Let $\left\{B_{\alpha}\right\}_{\alpha \in S}$ be a nonempty class of sets. We define their

1. union as $\underset{\alpha \in S}{\cup} \boldsymbol{B}_{\boldsymbol{\alpha}}=\left\{x \mid x \in B_{\alpha}\right.$, for some $\left.\alpha\right\}$, and
2. intersection as $\cap_{\alpha \in S} \boldsymbol{B}_{\boldsymbol{\alpha}}=\left\{x \mid x \in B_{\alpha}\right.$, for all $\left.\alpha\right\}$.
3. Convention: Union of an empty class is \emptyset. The intersection of an empty class of subsets of X is X^{1}.
Example 2.1.3. 1. Take $A=[3], A_{1}=\{1,2\}, A_{2}=\{2,3\}$ and $A_{3}=\{4,5\}$. Then, $\left\{A_{\alpha} \mid\right.$ $\alpha \in A\}=\left\{A_{1}, A_{2}, A_{3}\right\}=\{\{1,2\},\{2,3\},\{4,5\}\}$. Thus, $\underset{\alpha \in A}{\cup} A_{\alpha}=[5]$ and $\underset{\alpha \in A}{\cap} A_{\alpha}=\emptyset$.
4. Take $A=\mathbb{N}$ and $A_{n}=\{n, n+1, \ldots\}$. Then, the family $\left\{A_{\alpha} \mid \alpha \in A\right\}=\left\{A_{1}, A_{2}, \ldots\right\}=$ $\{\{1,2, \ldots\},\{2,3, \ldots\}, \ldots\}$. Thus, $\cup_{\alpha \in A}^{\cup} A_{\alpha}=\mathbb{N}$ and $\underset{\alpha \in A}{\cap} A_{\alpha}=\emptyset$.
5. Prove that the intersection $\bigcap_{n \in \mathbb{N}}\left[-\frac{1}{n}, \frac{2}{n}\right]=\{0\}$.

We now give a set of important rules whose proofs are left for the reader.
Theorem 2.1.4. [Algebra of union and intersection] Let $\left\{A_{\alpha}\right\}_{\alpha \in L}$ be a nonempty class of subsets of X and B be any set. Then, the following statements are true.

1. $B \cap\left(\cup_{\alpha \in L} A_{\alpha}\right)=\underset{\alpha \in L}{\cup}\left(B \cap A_{\alpha}\right)$.
2. $B \cup\left(\cap_{\alpha \in L} A_{\alpha}\right)=\bigcap_{\alpha \in L}^{\cap}\left(B \cup A_{\alpha}\right)$.
3. $\left(\cup_{\alpha \in L} A_{\alpha}\right)^{c}=\cap_{\alpha \in L} A_{\alpha}^{c}$.

[^2]4. $\left(\cap_{\alpha \in L} A_{\alpha}\right)^{c}=\underset{\alpha \in L}{\cup} A_{\alpha}^{c}$.

Proof. We give the proofs for Part 1 and 4. For Part 1, we see that

$$
\begin{aligned}
x \in B \cap\left(\cup_{\alpha \in L} A_{\alpha}\right) & \Leftrightarrow x \in B \text { and } x \in \underset{\alpha \in L}{\cup} A_{\alpha} \Leftrightarrow x \in B \text { and } x \in A_{\alpha}, \text { for some } \alpha \in L \\
& \Leftrightarrow x \in B \cap A_{\alpha}, \text { for some } \alpha \in L \Leftrightarrow x \in \underset{\alpha \in L}{\cup}\left(B \cap A_{\alpha}\right) .
\end{aligned}
$$

For Part 4, we have

$$
\begin{aligned}
x \in\left(\cap_{\alpha \in L} A_{\alpha}\right)^{c} & \Leftrightarrow x \notin \underset{\alpha \in L}{\cap} A_{\alpha} \Leftrightarrow x \notin A_{\alpha}, \text { for some } \alpha \in L \Leftrightarrow x \in A_{\alpha}^{c} \text {, for some } \alpha \in L \\
& \Leftrightarrow x \in \underset{\alpha \in L}{\cup} A_{\alpha}^{c} .
\end{aligned}
$$

Proceed in similar lines to complete the proofs of the other parts.
Exercise 2.1.5. 1. Consider $\left\{A_{x}\right\}_{x \in \mathbb{R}}$, where $A_{x}=[x, x+1]$. What is $\underset{x \in \mathbb{R}}{\cup} A_{x}$ and $\cap_{x \in \mathbb{R}} A_{x}$?
2. For $x \in[0,1]$ write $\mathbb{Z} x:=\{z x \mid z \in \mathbb{Z}\}$ and $A_{x}=\mathbb{R} \backslash \mathbb{Z} x$. What is $\underset{x \in \mathbb{R}}{\cup} A_{x}$ and $\underset{x \in \mathbb{R}}{\cap} A_{x}$?
3. Write the closed interval $[1,2]=\bigcap_{n \in \mathbb{N}} I_{n}$, where I_{n} are open intervals.
4. Write \mathbb{R} as a union of infinite number of pairwise disjoint infinite sets.
5. Write the set [4] as the intersection of infinite number of infinite sets.
6. Suppose that $A \Delta B=B$. Is $A=\emptyset$?
7. Prove Theorem 2.1.4.

2.2 More on Relations

Proposition 2.2.1. [Properties of union and intersection under a relation] Let $f: X \rightarrow Y$ be a relation and $\left\{A_{\alpha}\right\}_{\alpha \in L} \subseteq \mathcal{P}(X)$. Then, the following statements hold.

1. $f\left(\cup_{\alpha \in L} A_{\alpha}\right)=\underset{\alpha \in L}{\cup} f\left(A_{\alpha}\right)$.
2. $f\left(\cap_{\alpha \in L} A_{\alpha}\right) \subseteq \cap_{\alpha \in L} f\left(A_{\alpha}\right)$. Give an example where the inclusion is strict.

Proof. Part 1:

$$
\begin{aligned}
y \in f\left(\cup_{\alpha \in L} A_{\alpha}\right) & \Leftrightarrow(x, y) \in f, \text { for some } x \in \underset{\alpha \in L}{\cup} A_{\alpha} \Leftrightarrow(x, y) \in f \text { with } x \in A_{\alpha}, \text { for some } \alpha \in L \\
& \Leftrightarrow y \in f\left(A_{\alpha}\right), \text { for some } \alpha \in L \Leftrightarrow y \in \underset{\alpha \in L}{\cup} f\left(A_{\alpha}\right) .
\end{aligned}
$$

For Part 2, we assume that $\underset{\alpha \in L}{\cap} A_{\alpha} \neq \emptyset$. Then,

$$
\begin{aligned}
y \in f\left(\cap_{\alpha \in L} A_{\alpha}\right) & \Leftrightarrow(x, y) \in f, \text { for some } x \in \bigcap_{\alpha \in L} A_{\alpha} \Leftrightarrow(x, y) \in f \text { with } x \in A_{\alpha}, \text { for all } \alpha \in L \\
& \Rightarrow y \in f\left(A_{\alpha}\right), \text { for all } \alpha \in L \Leftrightarrow y \in \bigcap_{\alpha \in L} f\left(A_{\alpha}\right) .
\end{aligned}
$$

Thus, the required result follows.

Remark 2.2.2. It is important to note the following in the proof of the above theorem:
' $y \in f\left(A_{\alpha}\right)$, for all $\alpha \in L$ ' implies that 'for each $\alpha \in L$, we can find some $x_{\alpha} \in A_{\alpha}$ such that $\left(x_{\alpha}, y\right) \in f^{\prime}$. That is, the x_{α} 's need not be the same. This gives you an idea to construct a counterexample.
Define $f:\{1,2,3,4\} \rightarrow\{a, b\}$ by $f=\{(1, a),(2, a),(2, b),(3, b),(4, b)\}$. Take $A_{1}=\{1,3\}$ and $A_{2}=\{1,2,4\}$ and verify that the inclusion in Part 2 of Theorem 2.2.1 is strict. Also, find the x_{i} 's for b.

Definition 2.2.3. [Composition of relations] We define the composition $g \circ f$ of relations f and g as

$$
g \circ f=\{(x, z) \mid(x, y) \in f \text { and }(y, z) \in g \text { for some } y \in \operatorname{rng}(f) \subseteq \operatorname{dom}(g)\} .
$$

It is a relation. The composition $f \circ g$ is defined similarly. In case, both f and g are functions then $(f \circ g)(x)=f(g(x))$.

Example 2.2.4. Take $f=\{(\beta, a),(3, b),(3, c)\}$ and $g=\{(b, \beta),(c, \beta)\}$. Then, $g \circ f=\{(3, \beta)\}$ and $f \circ g=\{(b, a),(c, a)\}$.

Definition 2.2.5. [Identity relation] A relation from X to X is called a relation on \boldsymbol{X}. The relation $\mathbf{I}:=\{(x, x) \mid x \in X\}$ is called the identity relation on X. It is also a function if $X \neq \emptyset$.

Definition 2.2.6. [Equivalence relation] Let f be a relation on X. We call f reflexive if $I \subseteq f$. We call f symmetric if $f=f^{-1}$. We call f transitive if $f \circ f \subseteq f$. An equivalence relation on X is a relation which is reflexive, symmetric and transitive.

Example 2.2.7. On $X=[5]$,

1. I is an equivalence relation,
2. $f:=I \cup\{(1,2),(2,1)\}$ is also an equivalence relation, and
3. $g:=I \cup\{(1,2),(2,1),(1,3)(3,1)\}$ is reflexive, symmetric but not transitive $((3,2) \notin g)$.
4. Let $f=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}: 10 \mid a-b\}$. Then, f is an equivalence relation.
5. Fix a positive integer n and let $f=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}: n \mid a-b\}$. Then, f is an equivalence relation.

Example 2.2.8. [Some more examples of relations]

1. Let $X \neq \emptyset$. Then, \emptyset is a symmetric and transitive relation on X, but not reflexive.
2. Let $A=\{a, b, c, d\}$. Then, some of the relations R on A are:
(a) $R=A \times A$.
(b) $R=\{(a, a),(b, b),(c, c),(d, d),(a, b),(a, c),(b, c)\}$.
(c) $R=\{(a, a),(b, b),(c, c)\}$.
(d) $R=\{(a, a),(a, b),(b, a),(b, b),(c, d)\}$.
(e) $R=\{(a, a),(a, b),(b, a),(a, c),(c, a),(c, c),(b, b)\}$.
(f) $R=\{(a, b),(b, c),(a, c),(d, d)\}$.
3. Some of the relations on \mathbb{Z} are as follows:
(a) $R=\left\{(a, b) \in \mathbb{Z}^{2} \mid 7\right.$ divides $\left.a-b\right\}$.
(b) $R=\left\{(a, b) \in \mathbb{Z}^{2} \mid a \leq b\right\}$.
(c) $R=\left\{(a, b) \in \mathbb{Z}^{2} \mid a>b\right\}$.
(d) $R=\left\{(a, b) \in \mathbb{Z}^{*} \times \mathbb{Z}^{*}|a| b\right\}$, where $\mathbb{Z}^{*}=\mathbb{Z} \backslash\{0\}$.
4. Consider the set \mathbb{R}^{2}. Also, let us write $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}\right)$. Then, some of the relations on \mathbb{R}^{2} are as follows:
(a) $R=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{2} \times\left.\mathbb{R}^{2}| | \mathbf{x}\right|^{2}=x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}=|\mathbf{y}|^{2}\right\}$.
(b) $R=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \mid \mathbf{x}=\alpha \mathbf{y}\right.$ for some $\left.\alpha \in \mathbb{R}^{*}\right\}$.
(c) $R=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \mid 4 x_{1}^{2}+9 x_{2}^{2}=4 y_{1}^{2}+9 y_{2}^{2}\right\}$.
(d) $R=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \mid \mathbf{x}-\mathbf{y}=\alpha(1,1)\right.$ for some $\left.\alpha \in \mathbb{R}^{*}\right\}$.
(e) Fix $c \in \mathbb{R}$. Now, define $R=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \mid y_{2}-x_{2}=c\left(y_{1}-x_{1}\right)\right\}$.
(f) $R=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{2} \times \mathbb{R}^{2}| | \mathbf{x}|=\alpha| \mathbf{y} \mid\right\}$, for some positive real number α.
5. Let A be the set of triangles in the plane. Then, $R=\left\{(a, b) \in A^{2} \mid a \approx b\right\}$, where \approx stands for similarity of triangles.
6. In \mathbb{R}, define a relation $R=\left\{(a, b) \in \mathbb{R}^{2} \mid a-b\right.$ is an integer $\}$.
7. Let A be any nonempty set and consider the set $\mathcal{P}(A)$. Then, one can define a relation R on $\mathcal{P}(A)$ by $R=\{(S, T) \in \mathcal{P}(A) \times \mathcal{P}(A) \mid S \subseteq T\}$.

Picture for a relation on X

We can draw pictures for relations on X. We first put a point for each element x of X and label it x. For each (x, y) in the relation, we put a directed line from x to y. If we have an (x, x) we draw a loop at x. The following are some pictures for the relations in Example 2.2.7.

Definition 2.2.9. [Equivalence class] Let f be an equivalence relation on X and $a \in X$. The set $\{x \in X \mid(x, a) \in f\}$ is called the equivalence class of a and is denoted \mathcal{E}_{a}.

Example 2.2.10. Consider the relations in Example 2.2.7.

1. For the relation I, we have 5 equivalence classes, namely, $\{1\},\{2\},\{3\},\{4\}$ and $\{5\}$.
2. For the relation f, we have 4 equivalence classes, namely, $\{1,2\},\{3\},\{4\}$ and $\{5\}$.
3. For $g \cup\{(3,2),(2,3)\}$, we have 3 equivalence classes, namely, $\{1,2,3\},\{4\}$ and $\{5\}$.
4. Notice that in all the three cases, the different equivalence classes are disjoint sets and in the picture they appear disconnected even after joining 2 and 3 by directed edges in g.

Proposition 2.2.11. [Equivalence relation divides a set into disjoint classes] Let f be an equivalence relation on X. Then, the following statements are true.

1. $(a, b) \in f$ if and only if $\mathcal{E}_{a}=\mathcal{E}_{b}$.
2. $(a, b) \notin f$ if and only if $\mathcal{E}_{a} \cap \mathcal{E}_{b}=\emptyset$.
3. Furthermore, $X=\underset{a \in X}{\cup} \mathcal{E}_{a}$.

Thus, an equivalence relation f on X divides X into disjoint equivalence classes.
Example 2.2.12. Let f be an equivalence relation on [5] whose equivalence classes are $\{1,2\}$, $\{3,5\}$ and $\{4\}$. Then, f must be $I \cup\{(1,2),(2,1),(3,5),(5,3)\}$.

Proposition 2.2.13. [Constructing equivalence relation from equivalence classes] Let f be an equivalence relation on $X \neq \emptyset$ whose disjoint equivalence classes are $\left\{\mathcal{E}_{a} \mid a \in A\right\}$. Then, $f=I \underset{a \in A}{\cup}\left\{(x, y) \mid x, y \in \mathcal{E}_{a}\right\}$.

EXERCISE 2.2.14. 1. Let X and Y be two nonempty sets and $f: X \rightarrow Y$ be a relation. Let I_{x} and I_{y} be the identity relations on X and Y, respectively. Then,
(a) is it necessary that $f^{-1} \circ f \subseteq I_{x}$?
(b) is it necessary that $f^{-1} \circ f \supseteq I_{x}$?
(c) is it necessary that $f \circ f^{-1} \subseteq I_{y}$?
(d) is it necessary that $f \circ f^{-1} \supseteq I_{y}$?
2. Suppose now that f is a function. Then,
(a) is it necessary that $f \circ f^{-1} \subseteq I_{y}$?
(b) is it necessary that $f^{-1} \circ f \supseteq I_{x}$?
3. Write down the equivalence classes for the equivalence relations that appear in Examples 2.2.7 and 2.2.8.
4. Take $A \neq \emptyset$. Is $A \times A$ an equivalence relation on A ? If yes, what are the equivalence classes?
5. On a nonempty set A, what is the smallest equivalence relation (in the sense that every other equivalence relation will contain this equivalence relation; recall that a relation is a set)?

Exercise 2.2.15. [Optional]

1. Let $X=[5]$ and f be a relation on X. By checking whether f is reflexive or not, whether f is symmetric or not and whether f is transitive or not, we see that there are 8 types of relations on X. Give one example for each type.
2. Let $A=B=[3]$. Then, what is the number of
(a) relations from A to B ?
(b) relations f from $[3]$ to $\{a, b, c\}$ such that $\operatorname{dom} f=\{1,3\}$?
(c) relations f from [3] to [3] such that $f=f^{-1}$?
(d) single valued relations from [3] to [3]? How many of them are functions?
(e) equivalence relations on [5].
3. [Important] Let $f: X \rightarrow Y$ be a single valued relation, $A \subseteq X, B \subseteq Y$ and $\left\{B_{\beta}\right\}_{\beta \in I}$ be a nonempty family of subsets of Y. Then, show that
(a) $f^{-1}\left(\cap_{\beta \in I} B_{\beta}\right)=\bigcap_{\beta \in I} f^{-1}\left(B_{\beta}\right)$.
(b) $f^{-1}\left(\underset{\beta \in I}{ } B_{\beta}\right)=\underset{\beta \in I}{\cup} f^{-1}\left(B_{\beta}\right)$.
(c) $f^{-1}\left(B^{c}\right)=\operatorname{dom} f \backslash f^{-1}(B)$.
(d) $f\left(f^{-1}(B) \cap A\right)=B \cap f(A)$. Note that this equality fails if f is not single valued.
4. Let f, g be two non-equivalence relations on \mathbb{R}. Then, is it possible to have $f \circ g$ as an equivalence relation? Give reasons for your answer.
5. Let f, g be two equivalence relations on \mathbb{R}. Then, prove/disprove the following statements.
(a) $f \circ g$ is necessarily an equivalence relation.
(b) $f \cap g$ is necessarily an equivalence relation.
(c) $f \cup g$ is necessarily an equivalence relation.
(d) $f \cup g^{c}$ is necessarily an equivalence relation.
6. Show that each set can be written as a union of finite sets.
7. Give an example of an equivalence relation on \mathbb{N} for which there are 7 equivalence classes, out of which exactly 5 are infinite.
8. Show that union of finitely many finite sets is a finite set.

2.3 More on functions

Recall that a function $f: A \rightarrow B$ is a single valued relation with $\operatorname{dom} f=A$. The readers need to carefully read the following important remark before proceeding further.

Remark 2.3.1. 1. If $A=\emptyset$, then by convention, one assumes that there is a function, called the empty function, from A to B.
2. If $B=\emptyset$, then it can be easily observed that there is no function from A to B.
3. Some books use the word 'map' in place of 'function'. So, both the words are used interchangeably throughout the notes.
4. Throughout these notes, whenever the phrase 'let $f: A \rightarrow B$ be a function' is used, it will be assumed that both A and B are nonempty sets.

Example 2.3.2. 1. Let $A=\{a, b, c\}, B=\{1,2,3\}$ and $C=\{3,4\}$. Then, verify that the examples given below are indeed functions.
(a) $f: A \rightarrow B$, defined by $f(a)=3, f(b)=3$ and $f(c)=3$.
(b) $f: A \rightarrow B$, defined by $f(a)=3, f(b)=2$ and $f(c)=2$.
(c) $f: A \rightarrow B$, defined by $f(a)=3, f(b)=1$ and $f(c)=2$.
(d) $f: A \rightarrow C$, defined by $f(a)=3, f(b)=3$ and $f(c)=3$.
(e) $f: C \rightarrow A$, defined by $f(3)=a, f(4)=c$.
2. Note that the following relations $f: \mathbb{Z} \rightarrow \mathbb{Z}$ are indeed functions.
(a) $f=\{(x, 1) \mid x$ is even $\} \cup\{(x, 5) \mid x$ is odd $\}$.
(b) $f=\{(x,-1) \mid x \in \mathbb{Z}\}$.
(c) $f=\{(x, x(\bmod 10)) \mid x \in \mathbb{Z}\}$.
(d) $f=\{(x, 1) \mid x<0\} \cup\{(0,0)\} \cup\{(x,-1) \mid x>0\}$.

EXERCISE 2.3.3. Do the following relations represent functions? Give reasons for your answer.

1. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by
(a) $f=\{(x, 1) \mid 2$ divides $x\} \cup\{(x, 5) \mid 3$ divides $x\}$.
(b) $f=\{(x, 1) \mid x \in S\} \cup\left\{(x,-1) \mid x \in S^{c}\right\}$, where S is the set of perfect squares in \mathbb{Z}.
(c) $f=\left\{\left(x, x^{3}\right) \mid x \in \mathbb{Z}\right\}$.
2. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be defined by $f=\left\{(x, \pm \sqrt{x}) \mid x \in \mathbb{R}^{+}\right\}$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f=\{(x, \sqrt{x}) \mid x \in \mathbb{R}\}$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be defined by $f=\{(x, \sqrt{x}) \mid x \in \mathbb{R}\}$.
5. Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be defined by $f=\left\{\left(x, \log _{e}|x|\right) \mid x \in \mathbb{R}^{*}\right\}$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f=\{(x, \tan x) \mid x \in \mathbb{R}\}$.

Exercise 2.3.4. 1. Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ by $f=\left\{\left.\left(x, \frac{-x}{2}\right) \right\rvert\, x\right.$ is even $\} \cup\left\{\left.\left(x, \frac{x+1}{2}\right) \right\rvert\, x\right.$ is odd $\}$. Is f one-one? Is it onto?
2. Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by $f=\{(x, 2 x) \mid x \in \mathbb{N}\}$ and $g=\left\{\left.\left(x, \frac{x}{2}\right) \right\rvert\, x\right.$ is even $\} \cup$ $\{(x, 0) \mid x$ is odd $\}$. Are f, g, and $g \circ f$ one-one? Are they onto?
3. Let A be the class of subsets of [9] of size 5 and B be the class of 5 digit numbers with strictly increasing digits. For $a \in A$, define $f(a)$ the number obtained by arranging the elements of a in increasing order. Is f one-one and onto?

Proposition 2.3.5. [Algebra of composition of functions] Let $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$ be functions.

1. Then, $(h \circ g) \circ f: A \rightarrow D$ and $h \circ(g \circ f): A \rightarrow D$ are functions. Moreover, $(h \circ g) \circ f=$ $h \circ(g \circ f)$ (associativity holds).
2. If f and g are injections then $g \circ f: A \rightarrow C$ is an injection.
3. If f and g are surjections then $g \circ f: A \rightarrow C$ is a surjection.
4. Let A and B be sets with at least two elements each and let $f: A \rightarrow B$ be a bijection. Then, the number of bijections from A to B is at least 2 .
5. [Extension] Let $f: A \rightarrow B$ and $g: C \rightarrow D$ be bijections. Suppose that $\operatorname{dom} f \cap \operatorname{dom} g=\emptyset$ and $\mathrm{rng} f \cap \operatorname{rng} g=\emptyset$. Then, $(f \cup g):(A \cup C) \rightarrow(B \cup D)$ is a bijection, where

$$
f \cup g=\{(x, f(x)) \mid x \in A\} \cup\{(x, g(x)) \mid x \in C\} .
$$

Definition 2.3.6. Fix a set A and let $\operatorname{Id}_{A}: A \rightarrow A$ be defined by $\operatorname{Id}_{A}(a)=a$, for all $a \in A$. Then, the function e_{A} is called the identity function or map on A.

The subscript A in Definition 2.3.6 will be removed, whenever there is no chance of confusion about the domain of the function.

Theorem 2.3.7. [Properties of identity function] Let A and B be nonempty sets, $f: A \rightarrow B$ and $g: B \rightarrow A$ be any two functions. Then, for the Id map defined above, one has

1. Id is a one-one and onto map.
2. the map $f \circ I d=f$.
3. the map $I d \circ g=g$.

Proof. Part 1: Let $\operatorname{Id}=\operatorname{Id}_{A}$. Then, by definition, $\operatorname{Id}(a)=a$, for all $a \in A$ and hence it is clear that Id is one-one and onto.
Part 2: By definition, $(f \circ \mathrm{Id})(a)=f(\operatorname{Id}(a))=f(a)$, for all $a \in A$. Hence, $f \circ \operatorname{Id}=f$.
Part 3: The readers are advised to supply the proof.
Theorem 2.3.8. [bijection principle] Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be functions. Prove that if

1. $g \circ f(i)=i$, for each $i \in A$, then f is one-one.
2. $f \circ g(j)=j$, for each $j \in B$, then f is onto.

Proof. Let $g \circ f(i)=i$, for each $i \in A$. Then, the assumption $f(i)=f(j)$ implies that $i=g \circ f(i)=g \circ f(j)=j$. Thus, f is one-one and the proof of the first part is over.
For the second part, let $f \circ g(j)=j$, for each $j \in B$. To see that f is onto, let $b \in B$ and put $a=g(b) \in A$. Then, by the given assumption, $f(a)=f(g(b))=b$.

EXERCISE 2.3.9. 1. Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $f=\{(x, 2 x) \mid x \in \mathbb{N}\}$ and $g=\left\{\left.\left(x, \frac{x}{2}\right) \right\rvert\,\right.$ x is even $\} \cup\{(x, 0) \mid x$ is odd $\}$. Then, verify that $g \circ f$ is the identity map on \mathbb{N}, whereas $f \circ g$ maps even numbers to itself and maps odd numbers to 0 .
2. Let $f: A \rightarrow B$ be a function. Then, f^{-1} is a function if and only if f is a bijection.

Cantor's Experiment for the student: Why does it happen?

Take a plain paper.

1. On the left draw an oval (of vertical length) and write the elements of [4] inside it, one below the other. On the right draw a similar but large oval and write the elements of $\mathcal{P}([4])$ inside it, one below the other.
2. Now draw a directed line from 1 (on the left) to any element on the right. Repeat this for 2,3 and 4 . We have drawn a function. Call it f.
3. Notice that $f(1), f(2), f(3)$ and $f(4)$ are sets. Find out the set $A=\{i: i \notin f(i)\}$. Locate this set on the right.
4. It is guaranteed that you do not have a directed line touching A. Why?

Lemma 2.3.10. [Cantor] Let S be a set and $f: S \rightarrow \mathcal{P}(S)$ be a function. Then, there exists $A \in \mathcal{P}(S)$ which does not have a pre-image. That is, there is no surjection from S to $\mathcal{P}(S)$.

Proof. On the contrary assume that $f: S \rightarrow \mathcal{P}(S)$ is a surjection. Then, for $A=\{x: x \notin f(x)\}$ there exists $a \in S$ such that $f(a)=A$. So, $A=f(a)=\{x: x \notin f(x)\}$. We now show that a neither belongs to A nor to A^{c}.
If $a \in A$, then by definition of $A, a \notin f(a)=A$. Similarly, if $a \notin A$ means that $a \in f(a)=A$. Thus, $a \notin A \cup A^{c}=S$, a contradiction.

EXERCISE 2.3.11. 1. Define $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ by $f(m, n)=2^{m-1}(2 n-1)$. Is f a bijection?
2. Are the following relations are single valued functions, one-one, onto, and/or bijections?
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f=\{(x, \sin x) \mid x \in \mathbb{R}\}$.
(b) $f=\left\{(x, y) \mid x^{2}+y^{2}=1, x, y \in \mathbb{R}\right\}$ from $\operatorname{dom}(f)$ to $\operatorname{rng}(f)$
(c) $f=\left\{(x, y) \mid x^{2}+y^{2}=1, x \geq 0, y \geq 0\right\}$ from $\operatorname{dom}(f)$ to $\operatorname{rng}(f)$
(d) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f=\left\{(x, \tan x) \left\lvert\,-\frac{\pi}{2}<x<\frac{\pi}{2}\right.\right\}$.
3. Let $f: X \rightarrow Y$ be one-one and $\left\{A_{\alpha}\right\}_{\alpha \in L}$ be a nonempty family of subsets of X. Is $f\left(\cap_{\alpha \in L} A_{\alpha}\right)=\bigcap_{\alpha \in L} f\left(A_{\alpha}\right)$?
4. Let $f: X \rightarrow Y$ be a bijection and $A \subseteq X$. Is $f\left(A^{c}\right)=(f(A))^{c}$?
5. Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be two functions such that
(a) $(f \circ g)(y)=y$ holds, for each $y \in Y$.
(b) $(g \circ f)(x)=x$ holds, for each $x \in X$.

Show that f is a bijection and $g=f^{-1}$. Can we conclude the same without assuming the second condition?

2.4 Supplying bijections

Experiment 1:

Make a horizontal list of the elements of \mathbb{N} using '...' only once. Now, horizontally list the elements of \mathbb{Z} just below the list of \mathbb{N} using '...' once. Draw vertical lines to supply a bijection from \mathbb{N} to \mathbb{Z}. Can you supply another by changing the second list a little bit?

Experiment 1:

Suppose that you have an open interval (a, b). Its center is $c=\frac{a+b}{2}$ and the distance of the center from one end is $\frac{l}{2}=\frac{b-a}{2}$. View this as a line segment on the real line. Stretch (a, b) uniformly without disturbing the center and make its length equal to L.
Where is c now (in \mathbb{R})? Where is $c-\frac{l}{2}$? Where is $c+\frac{l}{2}$? Where is $c-\alpha \times \frac{l}{2}$, for a fixed $\alpha \in(-1,1)$?
Now, use the above idea to find a bijection from (a, b) to (s, t) ? [Hint: Fix the center first.]

EXERCISE 2.4.1. 1. Supply two bijections from $(1, \infty)$ to $(5, \infty)$, one by 'scaling' and the other by 'translating'.
2. Take reciprocal to supply a bijection from $(0,1)$ to $(1, \infty)$. You can also use the exponential function to get this.
3. Supply a bijection from $(-1,1)$ to $(-\infty, \infty)$.
4. Supply a bijection from $(0,1) \times(0,1)$ to $\mathbb{R} \times \mathbb{R}$.

Train-Seat argument to find a bijection

Let $f: P=(0,1) \rightarrow T=(3,5)$ be a bijection. Imagine elements of P as PERSONS and elements of T as seats in a TRAIN. So, f assign a seat to each person and the train is full.

1. Now suppose a new person 0 is arriving. He wants a seat. To manage it, let us un-seat two persons $\frac{1}{2}, \frac{1}{3}$. So, two seats $f\left(\frac{1}{2}\right), f\left(\frac{1}{3}\right)$ are vacant. But we have 3 persons to take those seats. Giving each person a seat is not possible.
2. Suppose that we un-seat $\frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{30}$? Can we manage it?
3. Suppose that we un-seat $\frac{1}{2}, \frac{1}{3}, \cdots$? Can we manage it now?
4. What do we do if we had two new persons arriving? Fifty new persons arriving? A set $\left\{a_{1}, a_{2}, \cdots\right\}$ of new persons arriving?

The next result is left as an exercise for the students.
Theorem 2.4.2. Let A be a set containing the set $\left\{a_{1}, a_{2}, \ldots,\right\}$ and let $f: A \rightarrow B$ be a bijection. Then, prove that, for any collection

1. $\left\{c_{1}, \ldots, c_{k}\right\}$ of elements that are outside A, the function

$$
h(x)= \begin{cases}f(x) & \text { if } x \in A \backslash\left\{a_{1}, a_{2}, \ldots\right\} \\ f\left(a_{i+k}\right) & \text { if } x=a_{i}, i \in \mathbb{N} \\ f\left(a_{i}\right) & \text { if } x=c_{i}, i=1,2, \ldots, k\end{cases}
$$

is a bijection from $A \cup\left\{c_{1}, \ldots, c_{k}\right\}$ to B.
2. $\left\{c_{1}, c_{2}, \ldots\right\}$ of elements that are outside A, the function

$$
h(x)= \begin{cases}f(x) & \text { if } x \in A \backslash\left\{a_{1}, a_{2}, \ldots\right\} \\ f\left(a_{2 n-1}\right) & \text { if } x=a_{n}, n \in \mathbb{N} \\ f\left(a_{2 n}\right) & \text { if } x=c_{n}, n \in \mathbb{N}\end{cases}
$$

is a bijection from $A \cup\left\{c_{1}, c_{2}, \ldots\right\}$ to B.
Proof. Exercise.
Exercise 2.4.3. In the following, give bijections from A to B, where

1. $A=[0,1)$ and $B=(0,1)$.
2. $A=(0,1) \cup\{1,2,3,4\}$ and $B=(0,1)$.
3. $(0,1) \cup \mathbb{N}$ to $(0,1)$.
4. $A=[0,1]$ and $B=[0,1] \backslash\left\{\frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \cdots\right\}$.
5. $A=\mathbb{R}$ and $B=\mathbb{R} \backslash \mathbb{N}$.
6. $A=(0,1)$ and $B=\mathbb{R} \backslash \mathbb{N}$.
7. $A=[0,1]$ and $B=\mathbb{R} \backslash \mathbb{N}$.
8. $A=(0,1)$ and $B=(1,2) \cup(3,4)$.
9. $A=\mathbb{R} \backslash \mathbb{Z}$ and $B=\mathbb{R} \backslash \mathbb{N}$.

Creating bijections from injections

Let $X=Y=\mathbb{N}$. Take injections $f: X \rightarrow Y$ and $g: Y \rightarrow X$ defined as $f(x)=x+2$ and $g(x)=x+1$. In the picture, we have X on the left and Y on the right. If $(x, y) \in f$, we draw a solid line joining x and y. If $(y, x) \in g$, we draw a dotted line joining y and x.

We want to create a bijection h from X to Y by erasing some of these lines.

1. Thus, $h(1)$ must be 3 . So, the dotted line $(3,4)$ cannot be used for h.
2. So, $h(4)$ must be 6 . So, the dotted line $(6,7)$ cannot be used for h.
3. So, $h(7)$ must be 9 . Continue two more steps to realize what is happening.

So, the bijection $h: X \rightarrow Y$ is given by $h(x)= \begin{cases}f(x), & \text { if } x=3 n-2, n \in \mathbb{N} \\ g^{-1}(x), & \text { otherwise. }\end{cases}$
EXERCISE 2.4.4. Take $X=Y=\mathbb{N}$. Supply bijections using the given injections $f: X \rightarrow Y$ and $g: Y \rightarrow X$.

1. $f(x)=x+1$ and $g(x)=x+2$.
2. $f(x)=x+1$ and $g(x)=x+3$.
3. $f(x)=x+1$ and $g(x)=2 x$.

Theorem 2.4.5. [Schröder-Bernstein: Creating a bijection] Let A and B be two non-empty sets and let $f: A \rightarrow B$ and $g: B \rightarrow A$ be injections. Then, there exists a bijection from A to B.

Proof. If g is onto, we have nothing to prove. So, assume that g is not onto. Put $O=A \backslash g(B)$, $\phi=g \circ f$ and $E=O \cup \phi(O) \cup \phi^{2}(O) \cup \cdots$. Use $\phi^{0}(O)$ to denote O. Notice that

$$
g(f(E))=\phi(E)=\phi\left(\bigcup_{n=0}^{\infty} \phi^{n}(O)\right)=\bigcup_{n=1}^{\infty} \phi^{n}(O)=E \backslash O,
$$

as g does not map to O. Hence, g maps $f(E)$ to $E \backslash O$ bijectively. Recall that O is the set of points in A that are not mapped by $g, O \subseteq E$ and g has already mapped $f(E)$ onto $E \backslash O$. Hence, g must map $f(E)^{c}$ to E^{c} bijectively. So, the function $h(x)=\left\{\begin{array}{ll}g^{-1}(x) & \text { if } x \in E^{c}, \\ f(x) & \text { if } x \in E,\end{array}\right.$ is a bijection from A to B.
Alternate. If g is onto, we have nothing to prove. So, assume that g is not onto. Put $O=A \backslash g(B), \phi=g \circ f$ and $E=O \cup \phi(O) \cup \phi^{2}(O) \cup \cdots$. Use $\phi^{0}(O)$ to denote O. Notice that

$$
\phi(E)=g(f(E))=\phi(E)=\phi\left(\bigcup_{n=0}^{\infty} \phi^{n}(O)\right)=\bigcup_{n=1}^{\infty} \phi^{n}(O)=E \backslash O,
$$

as g does not map to O. Observe that $\phi: E \rightarrow E \backslash O$ is a bijection. Define $h: A \rightarrow A \backslash O$ as

$$
h(x)= \begin{cases}x, & \text { if } x \in A \backslash E, \\ \phi(x), & \text { if } x \in E .\end{cases}
$$

Then, note that h is a bijection and hence $h^{-1} \circ g$ is a bijection from B to A.
Alternate. Let $F=\left\{T \subseteq A \mid g\left(f(T)^{c}\right) \subseteq T^{c}\right\}$.

Note that $\emptyset \in F$. Put $U=\underset{T \in F}{\cup} T$. Then, $U \in F$, as
$g\left(f(U)^{c}\right)=g\left(\left[f\left(\cup_{T \in F}^{\cup} T\right)\right]^{c}\right)=g\left(\left[\bigcup_{T \in F}^{\cup} f(T)\right]^{c}\right)=g\left(\cap_{T \in F} f(T)^{c}\right)=\underset{T \in F}{\cap} g\left(f(T)^{c}\right) \subseteq \bigcap_{T \in F}^{\cap} T^{c}=U^{c}$.
Thus, U is the maximal element of F. We claim that $U^{c} \subseteq g\left(f(U)^{c}\right)$. To see this, take $x \in U^{c} \backslash g\left(f(U)^{c}\right)$ and put $V=U \cup\{x\}$. Then, $f(U) \subseteq f(V)$ and so $f(V)^{c} \subseteq f(U)^{c}$. Thus

$$
g\left(f(V)^{c}\right) \subseteq g\left(f(U)^{c}\right) \subseteq U^{c} \cap\{x\}^{c}=V^{c}
$$

a contradiction to the maximality of U in F. So, $g\left(f(U)^{c}\right)=U^{c}$. Now, define $h: A \rightarrow B$ as

$$
h(x)= \begin{cases}f(x) & \text { if } x \in U \\ g^{-1}(x) & \text { else }\end{cases}
$$

It is easy to see that h is a bijection.

Exercise 2.4.6. 1. Give a one-one function from \mathbb{N} to \mathbb{Q}. Define f from \mathbb{Q} to \mathbb{N} as

$$
f(x)= \begin{cases}2^{r} 3^{s} & \text { if } x=\frac{r}{s}, \operatorname{gcd}(r, s)=1, r>0, s>0 \\ 5^{r} 3^{s} & \text { if } x=\frac{-r}{s}, \operatorname{gcd}(r, s)=1, r>0, s>0 \\ 1 & \text { if } x=0\end{cases}
$$

Argue that f is one-one. Apply Schröder-Bernstein theorem to prove that \mathbb{Q} is equivalent to \mathbb{N}.
2. Give a one-one map from $(0,1) \rightarrow(0,1) \times(0,1)$. For each $x \in(0,1)$, let.$x_{1} x_{2} \cdots$ be the nonterminating decimal representations ${ }^{1}$ of x. For $x=. x_{1} x_{2} x_{3} \cdots, y=. y_{1} y_{2} y_{3} \cdots$, define $f(x, y)=. x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} \cdots$. Argue that f is an injection from $(0,1) \times(0,1)$ to $(0,1)$. Hence, show that $(0,1)$ is equivalent to $(0,1) \times(0,1)$. Hence, show that $\mathbb{R} \times \mathbb{R}$ is equivalent to \mathbb{R}.
3. Fix $k \in \mathbb{N}$. Supply a one-one map from \mathbb{N} to \mathbb{N}^{k}. Use k distinct primes to supply a one-one map from \mathbb{N}^{k} to \mathbb{N}. Conclude that \mathbb{N}^{k} is equivalent to \mathbb{N}.
4. Supply a bijection from $(0,1)$ to $(1,2) \cup(3,4) \cup(5,6) \cup(7,8) \cup \cdots$.
5. Show using Schröder-Bernstein that $(0,1)$ is equivalent to $(0,1]$.

[^3]
Chapter 3

Countability, cardinal numbers* and partial order

3.1 Countable-uncountable

Definition 3.1.1. A set which is either finite or equivalent to \mathbb{N} is called a countable set. A set which is not countable is an uncountable set.

Definition 3.1.2. Let A be a countably infinite set. Then, by definition, there is a bijection $f: \mathbb{N} \rightarrow A$. So, we can list all the elements of A as $f(1), f(2), \ldots$. This list is called an enumeration of the elements of A.

Example 3.1.3. 1. We know that \mathbb{Z} is a countably infinite set.
2. The set $\mathbb{N} \backslash[99]$ is a countably infinite set.
3. The set $\mathcal{P}(\mathbb{N})$ is uncountable by Cantor's lemma.
4. Let S be the set of all 0-1-sequences $x=x_{1}, x_{2}, \ldots$. Define $f: S \rightarrow \mathcal{P}(\mathbb{N})$ as $f(x)=\{n \mid$ $\left.x_{n}=1\right\}$. Then f is a bijection. Hence, S is uncountable by Cantor's lemma.
5. Let $T=\{x \in(0,1) \mid x$ has a decimal expansion containing the digits 0 and 1 only $\}$. Then T is uncountable.

Proof. One proof follows by the previous idea.
Alternate. [Cantor's diagonalization] If S is countable (clearly infinite), let x_{1}, x_{2}, \ldots be an enumeration. Let $x_{n}=. x_{n 1} x_{n 2} \cdots$, where $x_{n i} \in\{0,1\}$. Put $y_{n n}=1$ if $x_{n n}=0$ and $y_{n n}=0$, otherwise. Consider the number $y=. y_{11} y_{22} \cdots \in S$. Notice that for each n, $y \neq x_{n}$. That is, $y \in S$ but it is not in the enumeration list. This is a contradiction.

Theorem 3.1.4. A set A is infinite if and only if it has a countably infinite subset.
Proof. Follows from Fact 1.2.23.12.
Lemma 3.1.5. Let $A=\left\{a_{1}, a_{2}, \ldots\right\}$ be countably infinite and $B \subseteq A$. Then B is countable.

Proof. If B is finite then by definition, it is countable. So, assume that B is infinite. Hence, by Theorem 3.1.4, B has a countable infinite subset, say $C=\left\{c_{1}, c_{2}, \ldots\right\}$. Thus, $f: A \rightarrow C \subseteq B$, defined by $f\left(a_{i}\right)=c_{i}, i=1,2, \ldots$ is a one-one map. On the other hand, $I d_{B}: B \rightarrow A$ is a one-one map. Hence, by Schröder-Bernstein theorem, B and A are equivalent.

As a corollary, we have the following result.
Corollary 3.1.6. Let A be uncountable and $A \subseteq B$. Then B is uncountable.

Proof. If B is countable, then by Lemma 3.1.5, A must be countable, a contradiction.
Theorem 3.1.7. If S is infinite, then $\mathcal{P}(S)$ is uncountable.
Proof. As S is infinite, there is a one-one map, say $f: \mathbb{N} \rightarrow S$. Now, define a map $g: \mathcal{P}(\mathbb{N}) \rightarrow$ $\mathcal{P}(S)$ as $g(A)=f(A)$. Then, g is clearly one-one and hence $g(\mathcal{P}(\mathbb{N}))$ is uncountable (by Cantor's lemma). Hence, $\mathcal{P}(S)$, being a superset is uncountable, by Corollary 3.1.6.

Theorem 3.1.8. Countable union of countable sets (union of a countable class of countable sets) is countable.

Proof. Let $\left\{A_{i}\right\}_{i \in \mathbb{N}}$ be a countable class of countable sets and put $X=\cup_{i} A_{i}$. If X is finite then we are done. So, let X be infinite. Hence, by Fact 1.2 .23 .12 , there is a one-one map $f: \mathbb{N} \rightarrow X$. Define $g: X \rightarrow \mathbb{N}$ as $g(x)=2^{i} 3^{k}$, if i is the smallest positive integer for which $x \in A_{i}$ and x appears at the k-th position in the enumeration of A_{i}. Then g is one-one. Now, by Schröder-Bernstein theorem A is equivalent to \mathbb{N}.

Theorem 3.1.9. The set $\mathcal{P}(\mathbb{N})$ is equivalent to $[0,1)$. Furthermore, $\mathcal{P}(\mathbb{N})$ is equivalent to \mathbb{R}.
Proof. We already know a one-one map $f: \mathcal{P}(\mathbb{N}) \rightarrow[0,1)$ (see Examples 3.1.3.4 and 3.1.3.5). Let $r \in(0,1)$. Consider the nonterminating binary representation of r. Denote by F_{r} the set of positions of 1 in this representation. Now, define $g:[0,1) \rightarrow \mathcal{P}(\mathbb{N})$ by $g(r)=F_{r}$, if $r \neq 0$ and $g(0)=\emptyset$. Then g is one-one. Now, by Schröder-Bernstein theorem $\mathcal{P}(\mathbb{N})$ is equivalent to $[0,1)$.

The next statement follows as $[0,1)$ is equivalent to $(0,1)$ (see Exercise 2.4.6.5) and $(0,1)$ is equivalent to \mathbb{R}.

Definition 3.1.10. [Cardinal numbers]

1. Cardinal numbers are symbols which are associated with sets such that equivalent sets get the same symbol. By $\overline{\overline{\boldsymbol{A}}}$ we denote the cardinal number associated with A.
2. If there is an injection $f: A \rightarrow B$, then we write $\overline{\bar{A}} \leq \overline{\bar{B}}$. By $\overline{\bar{A}} \geq \overline{\bar{B}}$, we mean that $\overline{\bar{B}} \leq \overline{\bar{A}}$.
3. If there is a bijection $f: A \rightarrow B$, then we write $\overline{\bar{A}}=\overline{\bar{B}}$.
4. We write $\overline{\overline{[n]}}$ as n and $\overline{\bar{\emptyset}}$ as 0 . Thus, for a finite set A, we have $\overline{\bar{A}}=|A|$.
5. We use \aleph_{0} to denote $\overline{\overline{\mathbb{N}}}$. If $x=\overline{\bar{A}}$ is a cardinal number by 2^{x} we mean $\overline{\overline{\mathcal{P}(A)}}$.

Fact 3.1.11. 1. If x, y, z are cardinal numbers such that $x \leq y$ and $y \leq z$, then $x \leq z$. In other words it says, if there is a one-one map from A to B and a one-one map from B to C, then there is a one-one map from A to C.
2. Let x be any cardinal number. Then $x \lesseqgtr 2^{x}$. This is Cantor's lemma.
3. The cardinal numbers we know till now are $0,1,2,3, \ldots, \aleph_{0}=\overline{\overline{\mathbb{N}}}, 2^{\aleph_{0}}=\overline{\overline{\mathbb{R}}}, 2^{2^{\aleph_{0}}}, \ldots$.
4. The cardinal numbers $\aleph_{0}=\overline{\overline{\mathbb{N}}}, 2^{\aleph_{0}}=\overline{\overline{\mathbb{R}}}, 2^{2^{\aleph_{0}}}, \ldots$ are called the infinite cardinal numbers.
5. The 'generalized continuum hypothesis' says that there is no cardinal number between an infinite cardinal number x and 2^{x}.

Example 3.1.12. 1. Let A be the set of all infinite sequences formed using 0,1 and B be the set of all infinite sequences formed using $0,1,2$. Which one has larger cardinality and why?

Ans: For $(x)=x_{1}, x_{2}, \cdots \in A$, let us define $f(x)=. x_{1} x_{2} \cdots$ (binary). Then $f: A \rightarrow[0,1]$ is a surjection and hence $\overline{\bar{A}} \geq \overline{\overline{[0,1]}}$. For $(y)=y_{1}, y_{2}, \cdots \in B$, let us define $g(y)=. y_{1} y_{2} \cdots$ (decimal). Then $g: B \rightarrow[0,1]$ is one-one. So, $\overline{\bar{B}} \leq \overline{\overline{[0,1]}}$ and hence $\overline{\bar{B}} \leq \overline{\bar{A}}$. Also, $I d_{A}: A \rightarrow B$ is an injection. Thus, $\overline{\bar{A}} \leq \overline{\bar{B}}$.
2. Write \mathbb{R} as a union of pairwise disjoint sets of size 5 .

Ans: Note that $\mathbb{R}=(-\infty, 2] \cup(2,3] \cup(3,6] \cup(6,7) \cup[7, \infty)$ and these five sets have the same cardinality. Let f, g, h and t be bijections from $(-\infty, 2]$ to $(2,3],(3,6],(6,7),[7, \infty)$, respectively. Then $\mathbb{R}=\underset{r \in(-\infty, 2)}{\cup}\{r, f(r), g(r), h(r), t(r)\}$.
3. Let S be a countable set of points on the unit circle in \mathbb{R}^{2}. Consider the line segments L_{s} with one end at the origin and the other end at a point $s \in S$. Fix these lines. We are allowed to rotate the circle anticlockwise (the lines do not move). Let T be another countable set of points on the unit circle. Can we rotate the circle by an angle θ so that no line L_{s} touches any of the points of T ?

Ans: Let $\theta_{i j}$ be the angle of rotation required so that point p_{i} touches line l_{j}. The set of all $\theta_{i j}$ is countable and the set $[0,2 \pi)$ is uncountable.
4. A complex number is algebraic if it is a root of a polynomial equation with integer coefficients. All other numbers are transcendental. Show that the set of algebraic numbers is countable.

Ans: For each point $a=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{Z}^{k} \times(\mathbb{Z} \backslash\{0\})$, let S_{k} be the roots of the polynomial equation $a_{0}+a_{1} x+\cdots+a_{k} x^{k}=0$. Take $A_{k}=\underset{a \in \mathbb{Z}^{k} \times(\mathbb{Z} \backslash\{0\})}{\bigcup} S_{k}$ and $A=\bigcup_{k=1}^{\infty} A_{k}$. Then A is the set of all algebraic numbers. The set A is countable as each A_{k} is countable and the union is over a countable set.
5. Give a bijection from \mathbb{R} to $\mathbb{R} \backslash \mathbb{Q}$.

Ans: Recall that \mathbb{Q} can be enumerated. First get a bijection from $\mathbb{R} \backslash \mathbb{Q}$ to itself. Now, use train-seat argument to adjust \mathbb{Q}.

3.2 Partial orders

Definition 3.2.1. Let f be a relation on X. We call f antisymmetric if $(x, y) \in f$ and $x \neq y$ implies $(y, x) \notin f$. That is, both (x, y) and (y, x) cannot be in f, whenever x and y are distinct. A relation on X is called a partial order if it is reflexive, transitive and antisymmetric. Let f be a partial order on X and $a, b \in X$. We say a and b are comparable if either $(a, b) \in f$ or $(b, a) \in f$.

Example 3.2.2. 1. Let $X=[5]$.
(a) The identity relation I is reflexive, transitive and antisymmetric. So, it is a partial order.
(b) The relation $I \cup\{(1,2)\}$ is also a partial order.
(c) The relation $I \cup\{(1,2),(2,1)\}$ is reflexive, transitive. But it is not antisymmetric, as $(1,2)$ and $(2,1)$ are both in f.
(d) The relation $I \cup\{(1,2),(3,4)\}$ is also a partial order.
2. Let $X=\mathbb{N}$. Then $f:=\{(a, b) \mid a$ divides $b\}$ is a partial order.
3. Let X be a nonempty class of sets. Then $f:=\{(A, B) \mid A \subseteq B\}$ is a partial order on X.
4. On \mathbb{R} the set $f:=\{(a, b) \mid a-b \leq 0\}$ is a partial order. It is called the usual partial order on \mathbb{R}. List 5 elements of f. Usual partial order on a subset of \mathbb{R} is defined similarly.

Exercise 3.2.3. Give a partial order on [5] with the

1. maximum number of elements in it.
2. minimum number of elements in it.

Definition 3.2.4. 1. [Partially ordered sets] The tuple (X, f) is called a partially ordered set (in short, poset) if f is a partial order on X. It is common to use \leq instead of f. We say $x \leq y$ to mean that x and y are related. We say $x<y$ to mean that $x \leq y$ and $x \neq y$.
2. [Linear order] A partial order f on X is called a linear/complete/total order if either $(x, y) \in f$ or $(y, x) \in f$, for each pair $x, y \in X$.
3. [Linear ordered set] The tuple (X, f) is said to be a linearly ordered set if f is a linear order on X. You may imagine the elements of a linearly ordered set as points on a line.
4. [Chain] A linearly ordered subset of a poset is called a chain. The maximum size of a chain is called the height of a poset.
5. [Anti-chain] Let (X, f) be a poset and $A \subseteq X$. Suppose that no two elements in A are comparable. Then A is called an anti-chain. The maximum size of an anti-chain is called the width of the poset.

Example 3.2.5. 1. The poset in Example 3.2.2.1a has height 1 (resp. chain is $\{1\}$) and width 5 (respectively, anti-chain is $\{1,2,3,4,5\}$).
2. The poset in Example 3.2.2.1b has height 2 (resp. chain is $\{1,2\}$) and width 4 (resp. anti-chain is $\{2,3,4,5\}$ or $\{1,3,4,5\}$).
3. The poset in Example 3.2.2.1d has height 2 (resp. chain is $\{1,2\}$ or $\{3,4\}$) and width 3 (resp. anti-chain is $\{1,3,5\}$). Find other anti-chains?
4. The set \mathbb{N} with the usual order is a linearly ordered set.
5. If (X, f) is a nonempty linearly ordered set, then the height of X is $\overline{\bar{X}}$ and the width of X is 1 .
6. The set \mathbb{N} with $a \leq b$ if a divides b, is not linearly ordered. However, the set $\{1,2,4,8,16\}$ is a chain. This is just a completely ordered subset of the poset. There are larger chains, for example, $\left\{2^{k} \mid k=0,1,2, \ldots\right\}$. It has height $\overline{\bar{N}}$ and width $\overline{\bar{N}}$.
7. The poset $(\mathcal{P}([5]), \subseteq)$ is not linearly ordered. However, $\{\emptyset,[2],[5]\}$ is a chain in it. So, is $\{\emptyset,\{2\},[2],[3],[4],[5]\}$. Its height is 6 . What is its width?

Definition 3.2.6. Let (Σ, \leq) be a nonempty finite linearly ordered set (like the English alphabets with $a \leq b \leq c \leq \cdots \leq z$) and Σ^{*} be the set of all words of elements of Σ. For $a \equiv a_{1} a_{2} \cdots a_{n}, b \equiv b_{1} b_{2} \cdots b_{m} \in \Sigma^{*}$ define $a \leq b$ if
(a) $a_{1}<b_{1}$ or
(b) $a_{i}=b_{i}$ for $i=1, \ldots, k$ and $a_{k+1}<b_{k+1}$ or
(c) $a_{i}=b_{i}$ for $i=1, \ldots, n$.

Then $\left(\Sigma^{*}, \leq\right)$ is a linearly ordered set. This ordering is called the lexicographic or dictionary ordering. Sometimes Σ is called the 'alphabet set' and Σ^{*} is called the 'dictionary'.

Exercise 3.2.7. Let D_{1} be the dictionary of words made from a, b, c and D_{2} be the dictionary of words made from a, b, d. Are these two sets equivalent?

Discussion 3.2.8. 1. [Directed graph representation of a finite poset] Often we represent a nonempty finite poset (X, \leq) by a picture. The process is described below.
(a) Put a dot for each element of X and label it.
(b) If $a \leq b$, then join the dot for a and the dot for b by an arrow (a directed line).
(c) Put a loop at the dot of a, for each $a \in X$.
2. A directed graph representation of $A=\{1,2,3,9,18\}$ with the 'divides' relation ($a \leq b$ if $a \mid b)$ is given below.

Definition 3.2.9. [Hasse diagram] The Hasse diagram of a nonempty finite poset (X, \leq) is a picture drawn in the following way.

1. Each element of X is represented by a point and is labeled with the element.
2. If $a \leq b$ then the point representing a must appear at a lower height than the point representing b and further the two points are joined by a line.
3. If $a \leq b$ and $b \leq c$ then the line between a and c is removed.

Later, we shall show that for every nonempty finite poset (X, \leq) a Hasse diagram can be drawn.

Example 3.2.10. Hasse diagram for $A=\{1,2,3,9,18\}$ with the 'divides' relation.

Exercise 3.2.11. Draw the Hasse diagram for $[3] \times[4]$ under lexicographic order.
Proposition 3.2.12. Let \mathcal{F} be a nonempty family of single valued relations such that either $f \subseteq g$ or $g \subseteq f$, that is, \mathcal{F} is linearly ordered. Let $h=\underset{f \in \mathcal{F}}{\cup} f$. Then the following are true.

1. h is single valued.
2. $\operatorname{dom}(h)=\underset{f \in \mathcal{F}}{\cup} \operatorname{dom}(f)$.
3. $\operatorname{rng}(h)=\underset{f \in \mathcal{F}}{\cup} \operatorname{rng}(f)$.
4. If every element of \mathcal{F} is one-one (from its domain to its range) then h is also one-one.

Proof. We shall only prove the first two items.

1. Let $x \in \operatorname{dom}(h)$ and $(x, y),(x, z) \in h$. Then there are $f, g \in \mathcal{F}$, such that $(x, y) \in f$ and $(x, z) \in g$. As \mathcal{F} is a chain, either $f \subseteq g$ or $g \subseteq f$, say $f \subseteq g$. Then, g is not single valued, a contradiction.
2. Note that $x \in \operatorname{dom}(h)$ means $(x, y) \in h$ for some y. This means $(x, y) \in f$ for some f. That is, $x \in \operatorname{dom}(f)$, for a function f. This means $x \in \underset{f \in \mathcal{F}}{\cup} \operatorname{dom}(f)$.
Definition 3.2.13. 1. [Bounds] Let (X, f) be a poset and $A \subseteq X$. We say $x \in X$ is an upper bound if for each $z \in A,(z, x) \in f$. In words, it means 'each element of A is $\leq x$ '. The term lower bound is defined analogously.
3. [Maximal] An element $x \in A$ is maximal, if 'whenever there exists a $z \in A$ with $(x, z) \in f$ then $x=z$. In other words, it means 'no element in A is strictly larger than x '. The term minimal is defined analogously.
4. [Maximum] An element $x \in A$ is called the maximum of A, if x is an upper bound of A. In other words, it means 'an upper bound of A which is contained in A '. Such an element, when it exists, is unique. The term minimum is defined analogously.
5. [Least upper bound] An element $x \in X$ is called the least upper bound (lub) of A if x is an upper bound of A and for each upper bound y of A, we have $(x, y) \in f$. In other words ' x is the minimum/least of the set of all upper bounds of A. The term greatest lower bound (glb) is defined analogously.

Example 3.2.14. Consider the two posets described by the following picture.

(X)

(Y)

Figure 3.1: Posets X and Y

1. Consider the poset in Figure 3.1 and let $X=A=\{a, b, c\}$. Then
(a) the maximal elements of A are b and c,
(b) the only minimal element of A is a,
(c) a is the lower bound of A in X,
(d) A has no upper bound in X,
(e) A has no maximum element,
(f) a is the minimum element of A,
(g) no element of X is the lub of A and
(h) a is the glb of A in X.
2. Consider the posets in Figures 3.1. Then, the definitions are illustrated in the following table. Note that $X=\{a, b, c\}$ and $Y=\{a, b, c, d\}$.

	$A=\{b, c\} \subseteq X$	$A=\{a, c\} \subseteq X$	$A=\{b, c\} \subseteq Y$
Maximal element(s) of A	b, c	c	b, c
Minimal element(s) of A	b, c	a	b, c
Lower bound(s) of A in X / Y	a	a	a
Upper bound(s) of A in X / Y	doesn't exist	c	d
Maximum element of A	doesn't exist	c	doesn't exist
Minimum element of A	doesn't exist	a	doesn't exist
lub of A in X / Y	doesn't exist	c	d
glb of A in X / Y	a	a	a

EXERCISE 3.2.15. Determine the maximal elements, minimal elements, lower bounds, upper bounds, maximum, minimum, lub and glb of A in the following posets (X, f).

1. Take $X=\mathbb{Z}$ with usual order and $A=\mathbb{Z}$.
2. Take $X=\mathbb{N}, f=\{(i, i): i \in \mathbb{N}\}$ and $A=\{4,5,6,7\}$.

Discussion 3.2.16. [Bounds of empty set] Let (X, f) be a nonempty poset. Then each $x \in X$ is an upper bound for \emptyset as well as a lower bound for \emptyset. So, an lub for \emptyset may or may not exist. For example, if $X=[3]$ and f is the usual order, then lub $\emptyset=1$. Whereas, if $X=\mathbb{Z}$ and f is the usual order, then an lub for \emptyset does not exist. Similar statements hold for glb.

Definition 3.2.17. A linear order f on X is said to be a well order if each nonempty subset A of X has a minimal element (in A). We call (X, f) a well ordered set to mean that f is a well order on X. Note that 'a minimal element', if it exists, is 'a minimum' in this case.

Example 3.2.18.

1. The set \mathbb{Z} with usual ordering is not well ordered, as $\{-1,-2, \ldots$,$\} is a nonempty subset$ with no minimal element.
2. The ordering $0 \leq 1 \leq-1 \leq 2 \leq-2 \leq 3 \leq-3 \leq \cdots$ describes a well order on \mathbb{Z}.
3. The set \mathbb{N} with the usual ordering is well ordered.
4. The set \mathbb{R} with the usual ordering is not well ordered as the set $(0,1)$ doesn't have its minimal element in $(0,1)$.

EXERCISE 3.2.19. Consider the dictionary order on \mathbb{N}^{2}. Show that this is a well order.
Definition 3.2.20. Let (W, \leq) be well ordered and $a \in W$. The initial segment of \boldsymbol{a} is defined as $I(a):=\{x \mid x \in W, x<a\}$.

Example 3.2.21. Take \mathbb{N} with the usual order. Then $I(5)=[4]$ and $I(1)=\emptyset$.
Theorem 3.2.22. [Principle of transfinite induction] Let (W, \leq) be a nonempty well ordered set. Let $A \subseteq W$ which satisfies 'whenever $I(w) \subseteq A$ then $w \in A$ '. Then $A=W$.

Proof. If $A \neq W$, then $A^{c} \neq \emptyset$. As W is well ordered, let s be the minimal element of A^{c}. So, any element $x<s$ is in A. That is, $I(s) \subseteq A$. By the hypothesis $s \in A$, a contradiction.

Fact 3.2.23. The principle of transfinite induction is the principle of mathematical induction when $W=\mathbb{N}$.

Proof. To see this, let $p(n)$ be a statement which needs to be proved by mathematical induction. Put $A=\{n \in \mathbb{N} \mid p(n)$ is true $\}$. Assume that we have been able to show that ' $I(n) \subseteq A \Rightarrow n \in$ A^{\prime}. It means, we have shown that $1 \in A$, as $\emptyset=I(1) \subseteq A$. Also we have shown that for $n \geq 2$, if $\{p(1), \ldots, p(n-1)\}$ are true then $p(n)$ is true as well, as $I(n)=[n-1]$.

Definition 3.2.24. [Product of sets] Recall that the product $A_{1} \times A_{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{i} \in A_{i}\right\}$ may be written as

$$
\left\{(f(1), f(2)) \mid f:[2] \rightarrow A_{1} \cup A_{2} \text { is a function with } f(1) \in A_{1}, f(2) \in A_{2}\right\}
$$

Moreover, if A_{1} and A_{2} are finite sets then $\left|A_{1} \times A_{2}\right|=\left|A_{1}\right| \cdot\left|A_{2}\right|$. In general, we define the product of the sets in $\left\{A_{\alpha}\right\}_{\alpha \in L}, L \neq \emptyset$, as

$$
\prod_{\alpha \in L} A_{\alpha}=\left\{f \mid f: L \rightarrow \underset{\alpha \in L}{\cup} A_{\alpha} \text { is a function with } f(\alpha) \in A_{\alpha} \text {, for each } \alpha \in L\right\} .
$$

Example 3.2.25. 1. Take $L=\mathbb{N}$ and $A_{n}=\{0,1\}$. Then $\prod_{\alpha \in L} A_{\alpha}$ is the class of functions $f: L \rightarrow\{0,1\}$. That is, it is the class of all 0 -1-sequences.
2. By definition, product of a class of sets among which one of them is \emptyset is empty.

What about product of a class of sets in which no one is empty? Is it nonempty? This could not be proved using the standard set theory. In fact, it is now proved that this question cannot be answered using the standard set theory. So, a new axiom, called the axiom of choice, was introduced.

Axiom 3.2.26. [Axiom of Choice] The product of a nonempty class of nonempty sets is nonempty.

Proposition 3.2.27. [injection-surjection] Let A and B be nonempty sets. Then, there is a surjection $g: A \rightarrow B$ if and only if there is an injection $f: B \rightarrow A$.

Proof. Let $g: A \rightarrow B$ be onto. We shall find an injection from B to A. To start with, notice that for each $b \in B$, the set $g^{-1}(b) \neq \emptyset$. Then, by axiom of choice $\prod_{b \in B} g^{-1}(b) \neq \emptyset$. Let $f \in \prod_{b \in B} g^{-1}(b)$. Then, by Definition 3.2.24, $f: B \rightarrow A$ is a function. As g is a function, $g^{-1}(b)$'s are disjoint and hence f is one-one.
Conversely, let $f: B \rightarrow A$ be one-one. Fix an element $b \in B$. Define $g: A \rightarrow B$ as

$$
g(x)= \begin{cases}f^{-1}(x), & \text { if } x \in f(B), \\ b, & \text { if } x \in A \backslash f(B)\end{cases}
$$

Observe that g is onto.

Definition 3.2.28. A class F of sets is called a family of finite character if it satisfies: ' $A \in F$ if and only if each finite subset of A is also in F '.

Example 3.2.29. 1. $\}$ is a family of finite character.
2. Power sets are families of finite character.
3. $\{\emptyset,\{1\},\{2\}\}$ is a family of finite character.
4. If $A \cap B=\emptyset$, then $\mathcal{P}(A) \cup \mathcal{P}(B)$ is a family of finite character.
5. The set $\{\emptyset\} \cup\{\{a\} \mid a \neq 0, a \in \mathbb{R}\}$ is a family of finite character. This is the class of linearly independent sets in \mathbb{R}.
6. Let \mathbb{V} be a non trivial vector space and F be the class of linearly independent subsets of \mathbb{V}. Then F is a family of finite character.

EXERCISE 3.2.30. 1. Let $L=A_{1}=A_{2}=A_{3}=[3]$. Is the set $\prod_{\alpha \in L} A_{\alpha}$ equal to the class of functions $f:[3] \rightarrow[3]$? Give reasons for your answer.
2. Give sets $A_{n}, n \in \mathbb{N}$ such that $\prod_{n \in \mathbb{N}} A_{n}$ has 6 elements. Give another. ${ }^{1}$

Some equivalent axioms of axiom of choice

[Axiom of choice] Cartesian product of a nonempty collection of nonempty sets is nonempty.
[Zorn's lemma] A partially ordered set in which every chain has an upper bound, has a maximal element.
[Zermelo's well ordering principle] Every set can be well ordered.
[Hausdorff's maximality principle] Every nonempty partially ordered set contains a maximal chain.
[Tukey's lemma] Every nonempty family of finite character has a maximal element.
EXERCISE 3.2.31. 1. Does there exist a poset with exactly 5 maximal chains of size (number of elements in it) $2,3,4,5,6$, respectively and 2 maximal elements? If yes, draw the Hasse diagram. If no, argue it.
2. Let (X, f) be a nonempty poset and $\emptyset \neq Y \subseteq X$. Define $f_{Y}=\{(a, b) \in f \mid a, b \in Y\}$. Show that f_{Y} is a partial order on Y. This is the induced partial order on Y.
3. Apply induction to show that a nonempty finite poset has a maximal element and a minimal element.

Discussion 3.2.32. [Drawing the Hasse diagram of a finite poset (X, f)] Let x_{1}, \ldots, x_{k} be the minimal elements of X. Draw k points on the same horizontal line and label them x_{1}, \ldots, x_{k}. Now consider $Y=X \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ and f_{Y}. By induction, the picture of $\left(Y, f_{Y}\right)$ can be drawn. Put it above those k dots. Let y_{1}, \ldots, y_{m} be the minimal elements of Y. Now, draw the lines $\left(x_{i}, y_{j}\right)$ if $\left(x_{i}, y_{j}\right) \in f$. This is the Hasse diagram of (X, f).

[^4]Discussion 3.2.33. [Existence of Hamel basis] Let \mathbb{V} be a vector space with at least two elements. Recall that the collection \mathcal{F} of linearly independent subsets of \mathbb{V} is a family of finite character. Recall that a basis or a Hamel basis is a maximal linearly independent subset of \mathbb{V}.
As \mathbb{V} has at least 2 elements, it has a nonzero element, say a. Then $\{a\} \in \mathcal{F}$. Hence, $\mathcal{F} \neq \emptyset$. Thus, by Tukey's lemma, the set \mathcal{F} has a maximal element. This maximal set is the required basis. Hence, we have proved that every vector space with at least 2 elements has a Hamel basis.
ExErcise 3.2.34. 1. Let $n \in \mathbb{N}$. Define $P_{n}=\{k \in \mathbb{N} \mid k$ divides $n\}$. Define a relation \leq_{n} on P_{n} as $\leq_{n}=\{(a, b) \mid$ a divides b $\}$. Show that $\left(P_{n}, \leq_{n}\right)$ is a poset, for each $n \in \mathbb{N}$. Give a necessary and sufficient condition on n so that $\left(P_{n}, \leq_{n}\right)$ is a completely ordered set.
2. Take $X=\{(1,1),(1,2),(1,3), \ldots\} \cup\{(2,1)(3,1),(4,1), \ldots\}$. The ordering defined is

$$
f=\underset{\substack{m, n \in \mathbb{N} \\ m \leq n}}{\cup}\{((1, m),(1, n))\} \bigcup_{\substack{m, n \in \mathbb{N} \\ m \leq n}}^{\cup}\{((m, 1),(n, 1))\} .
$$

Does X have any maximal or minimal elements? Is X linearly ordered? Is it true that every nonempty set has a minimal element? Is it true that every nonempty set has a minimum? What type of nonempty sets always have a minimum?
3. Prove or disprove:
(a) There are at least 5 functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which are partial orders.
(b) Let S be the set of sequences $\left(x_{n}\right)$, with $x_{n} \in\{0,1, \ldots, 9\}$, for each $n \in \mathbb{N}$, such that 'if $x_{k}<x_{k+1}$, then $\left.x_{k+1}=x_{k+2}=\cdots\right\}$ '. Then S is countable.
(c) Take \mathbb{N} with usual order. Then the dictionary order on \mathbb{N}^{2} is a well order.
(d) Let S be the set of all non-increasing sequences made with natural numbers. Then S is countable.
(e) Let S be the set of all nondecreasing sequences made with natural numbers. Then S is countable.
(f) Take \mathbb{N} with usual order and \mathbb{N}^{2} with the dictionary order. Then any nonempty subset of \mathbb{N}^{2} which is bounded above has a lub.
(g) Every nonempty countable linearly ordered set is well ordered with respect to the same ordering.
(h) Every nonempty countable chain which is bounded below, in a partially ordered set, is well ordered with respect to the same ordering.
(i) The set \mathbb{Q} can be well ordered.
(j) For a fixed $n \in \mathbb{N}$, let A_{n} and B_{n} be non-empty sets and let R_{n} be a one-one relation from A_{n} to B_{n}. Then, $\cap_{n} R_{n}$ is a one-one relation.
(k) Let S be the set of words with length at most 8 using letters from $\{3, A, a, b, C, c\}$. We want to define a lexicographic order on S to make it a dictionary. There are more than 500 ways to do that.
(l) An infinite poset in which each nonempty finite set has a minimum, must be linearly ordered.
(m) A nonempty finite poset in which each nonempty finite set has a minimum, must be well ordered.
(n) An infinite poset in which each nonempty finite set has a minimum, must be well ordered.
4. Let $S=\left\{(x, y): x^{2}+y^{2}=1, x \geq 0\right\}$. It is a relation from $\mathbb{R} \rightarrow \mathbb{R}$. Draw a picture of the inverse of this relation.
5. Construct the Hasse diagram for the \subseteq relation on $\mathcal{P}(\{a, b, c\})$.
6. Draw the Hasse diagram for the partial order describing the 'divides' relations on the set $\{2,3,4,5,6,7,8\}$.
7. Draw the Hasse diagram of $\{1,2,3,6,9,18\}$ with 'divides' relation.
(a) What is its height? What is its width.
(b) Let $A=\{2,3,6\}$. What are the maximal elements, minimal elements, maximum, minimum, lower bounds, upper bounds, glb and lub of A.
8. Show that the following three definitions are equivalent.
(a) A set A is finite if either $A=\emptyset$ or $\overline{\bar{A}}=\overline{\overline{[n]}}$, for some $n \in \mathbb{N}$.
(b) [Tarski] A set A is finite if and only if every nonempty family of subsets of A has a minimal element.
(c) [Dedekind] A set is infinite if it is equivalent to a proper subset of itself. A set is finite if it is not infinite.
9. Let (X, f) be a nonempty poset. Show that there exists a linear order g on X such that $f \subseteq g$.
10. Let G be a non-Abelian group and H be an Abelian subgroup of G. Show that there is a maximal Abelian subgroup J of G such that $H \subseteq J$.
11. Let F be a family of finite character and B be a chain in F. Show that $\underset{A \in B}{\cup} A \in F$.
12. Let $A \neq \emptyset$ and \mathbb{F} be a field. Let $\mathbb{F}^{A}:=\{f: f$ is a function from A to $\mathbb{F}\}$. Let $\Gamma:=\{f \in$ $\mathbb{F}^{A}:\{a \in A: f(a) \neq 0\}$ is finite $\}$. Show that Γ is a vector space over \mathbb{F} with respect to point-wise addition of functions and point-wise scalar multiplication. Also show that every vector space \mathbb{V} is isomorphic to Γ for some suitable choice of A.
13. Let X be a vector space and A be a nonempty linearly independent subset of X. Let $S \subseteq X$ satisfy $\operatorname{span}(S)=X$. Show that \exists a Hamel basis B such that $A \subseteq B \subseteq S$.
14. Let (L, \leq) be a nonempty linearly ordered set. Prove that $\exists W \subseteq L$ such that \leq well orders W and such that for each $x \in L$, there is a $y \in W$ satisfying $x \leq y$. For example, for $L=\mathbb{R}$, we can take $W=\mathbb{N}$.
15. Show that \mathbb{R} is not a finite dimensional vector space over \mathbb{Q}. Hint: Assume that \mathbb{R} as a vector space over \mathbb{Q} has dimension k. Argue that \mathbb{R} is isomorphic to \mathbb{Q}^{k} and so it is countable, a contradiction.
16. Let A be a nonempty set. Then there is an element a which is not in A.
17. Let A be a nonempty set. Then there exists B such that $A \cap B=\emptyset$ and $\overline{\bar{A}}=\overline{\bar{B}}$.
18. Let A and B be two nonempty sets. Show that there is a set C such that $C \cap A=\emptyset$ and $\overline{\bar{C}}=\overline{\bar{B}}$.
19. Let A and B be nonempty sets. Put $a=\overline{\bar{A}}$ and $b=\overline{\bar{B}}$. Then show that either $a \leq b$ or $b \leq a$.
20. Let $a=\overline{\bar{A}}$ and $b=\overline{\bar{B}}$, where $A \cap B=\emptyset$. Then we define $\boldsymbol{a}+\boldsymbol{b}$ as $\overline{\overline{A \cup B}}$ and $\boldsymbol{a b}$ as $\overline{\overline{A \times B}}$.
(a) Let a be an infinite cardinal number. Show that $a+a=a$ and $a a=a$.
(b) Let a, b, c be cardinal numbers. Show that $a \leq b \Rightarrow\{a+c \leq b+c, a c \leq b c\}$.
21. Suppose that $u \leq v$ are two infinite cardinal numbers. Then show that $u+v=v$ and $u v=v$.

Chapter 4

Logic

4.1 Propositional logic

We study logic to differentiate between valid and invalid arguments. An argument is a set of statements which has two parts: premise and conclusion. There can be many statements in the premise. Conclusion is just one statement. An argument has the structure
premise: Statement ${ }_{1}, \ldots$, Statement $_{k}$; therefore conclusion: Statement $_{c}$.
Consider the following examples.

- Statement ${ }_{1}$: If today is Monday, then Mr. X gets Rs. 5,

Statement $_{2}$: Today is Monday,
Statement $_{c}$: Therefore, Mr. X gets Rs. 5 (statement $_{c}$).

- Statement ${ }_{1}$: If today is Monday, then Mr. X gets Rs. 5, Statement $_{2}$: Mr. X gets Rs. 5, Statement $_{c}$: Therefore, today is Monday.
- Statement ${ }_{1}$: If today is Monday, then Mr. X gets Rs. 5

Statement $_{2}$: today is Tuesday,
Statement $_{c}$: Therefore, Mr. X gets Rs. 5.
We understand that the first one is a valid argument, whereas the next two are not. In order to differentiate between valid and invalid argument, we need to analyze an argument. And in order to do that, we first have to understand 'what is a statement'. A simple statement is an expression which is either false or true but not both. We create complex statements from the old ones by using 'and', 'or' and 'not'.

For example, 'today is Monday' is a statement. 'Today is Tuesday' is also a statement. 'Today is Monday and today is Tuesday' is also a statement. 'Today is not Monday' is also a statement.
One way to analyze an argument is by writing it by symbols. The following definition captures the notion of a 'statement'.

Definition 4.1.1. 1. [Atomic formulae and truth values] Consider a nonempty finite set of symbols \mathcal{F}. We shall call the elements of \mathcal{F} as atomic formula (also called atomic
variables). (These are our simple statements). The truth value of each element in \mathcal{F} is exactly one of T (for TRUE) and F (for FALSE). Normally, we use symbols $p, q, p_{1}, p_{2}, \ldots$ for atomic formulae.
2. [Operations to create new formulae] We use three symbols ' V ' called disjunction/or), ' \wedge ' (called conjunction/and), and ' \neg ' (called negation) to create new formulae. The way they are used and the way we attribute the truth value to such a new formula is described below.

If p and q are formulae, then $p \wedge q, p \vee q$, and $\neg p$ are formulae. The truth value of $p \wedge q$ is defined to be T when the truth values of both p and q are T. Its truth value is defined to be F in all other cases. The truth value of $p \vee q$ is defined to be T when the truth values of at least one of p and q are T. Its truth value is defined to be F when the truth values of both p and q are F. The truth value of $\neg p$ is defined to be T if the truth value of p is F. The truth value of $\neg p$ is defined to be F if the truth value of p is T.

Understanding \vee, \wedge and \neg
The following tables describe how we attribute the truth values to $p \vee q, p \wedge q$ and $\neg p$.

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

p	$\neg p$
T	F
F	T

How do we read these tables? Look at row 3 of the leftmost table (exclude the header). It tells that the formula $p \wedge q$ takes the truth value F if p takes truth value F and q takes T.

Remark 4.1.2. We use brackets while creating new formulae to make the meaning unambiguous. For example, the expression $p \vee q \wedge r$ is ambiguous, where as $p \vee(q \wedge r)$ is unambiguous.

Definition 4.1.3. 1. Sometimes we write ' $f\left(p_{1}, \ldots, p_{k}\right)$ is a formula' to mean that ' f is a formula involving the atomic formulae p_{1}, \ldots, p_{k} '.
2. Let $f\left(p_{1}, \ldots, p_{k}\right)$ be a formula. Then, the truth value of f is determined based on the truth values of the atomic formulae p_{1}, \ldots, p_{k}. Since, there are 2 assignments for each $p_{i}, 1 \leq i \leq$ k, there are 2^{k} ways of assigning truth values to these atomic formulae. An assignment of truth values to these atomic formulae is nothing but a function $A:\left\{p_{1}, \ldots, p_{k}\right\} \rightarrow\{T, F\}$.
3. By saying 'TFT is an assignment to the atomic variables p, q, r ', we mean that the truth value of p is T, that of q is F and that of r is T. Keeping this in mind, all possible assignments to p, q, r are listed below. (Notice that, it is in the dictionary order, that is, ' $F F F$ appears before $F F T$ in the list as if they are words in a dictionary'. The reader will notice that in the table given above, we have followed the reverse dictionary order while writing a truth table, which is natural to us. This should not create any confusion.)

p	q	r
F	F	F
F	F	T
F	T	F
F	T	T
T	F	F
T	F	T
T	T	F
T	T	T

4. A truth table for a formula $f\left(p_{1}, \ldots, p_{k}\right)$ is a table which systematically lists the truth values of f under each possible assignment. The following is a truth table for the formulae $p \vee(q \wedge r)$.

p	q	r	$p \vee(q \wedge r)$
F	F	F	F
F	F	T	F
F	T	F	F
F	T	T	T
T	F	F	T
T	F	T	T
T	T	F	T
T	T	T	T

5. In the previous table, if we fill the fourth column arbitrarily using T 's and F 's, will it be a truth table of some formula involving p, q and r ? We shall talk about it later.

We have already noted that we use \vee, \wedge and \neg to create new formulae from old ones. We shall later show that all possible formulae can be created using the above symbols. Some of them will indeed be very important.

Definition 4.1.4. [Conditional formulae]

1. [p implies q] If p and q are formulae, then the formula $(\neg p) \vee q$ is denoted by $p \rightarrow q$ (read as \boldsymbol{p} implies \boldsymbol{q}). Its truth table is

p	q	$(\neg p) \vee q$
T	T	T
T	F	F
F	T	T
F	F	T

Observe
a) $p \rightarrow q$ takes the truth value F if and only if p takes the truth value T and q takes the truth value F.
b) If under some assignment ' $p \rightarrow q$ takes the truth value T ' and that 'in this assignment p is T^{\prime}, then it follows that in this assignment q must be T. This is why $p \rightarrow q$ is called 'if p then q '.
c) Other phrases used for 'if p then q ' are ' p is sufficient for q ' or ' p only if q ' or ' q is a necessary condition for p.
d) We sometimes use $p \leftarrow q$ to mean $q \rightarrow p$.
2. [p if and only if q] The formula ($p \leftrightarrow q$) (called ' p if and only if q ') means $(p \rightarrow q) \wedge(q \rightarrow p)$. Note that $(p \leftrightarrow q)$ takes the truth value ' T whenever p and q take the same truth values' and takes the truth value ' F whenever p and q take different truth values'. Its truth table is

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

3. [Converse/Contrapositive] The formula $q \rightarrow p$ is called the converse of $p \rightarrow q$ and the formula $\neg q \rightarrow \neg p$ is called the contrapositive of $p \rightarrow q$.

Discussion 4.1.5. [Understanding a conditional formula] When we assign different 'English statements' to the involved atomic formulae, we get an English statement corresponding to those formulae. For example, for the formula $p \rightarrow q$, consider the following statements:
p : you attend the class.
q : you understand the subject.
Then, $p \rightarrow q$ is the statement 'if you attend the class, then you understand the subject'. The formula $p \rightarrow q$ is true under the following three cases.

1. p is true and q is true: this means 'you attend the class and understand the subject'.
2. p is false and q is false: this means 'you do not attend the class and do not understand the subject'.
3. p is false and q is true: this means 'you do not attend the class but understand the subject'.

The formula $p \rightarrow q$ is false if ' p is true and q is false', which means 'you attend the class and do not understand the subject'.

Definition 4.1.6. [Connectives] The symbols $\vee, \wedge, \neg, \rightarrow$ and \leftrightarrow are called connectives. The set of well formed formulae ($\mathbf{w f f}$) are defined inductively. Each atomic variable is a wff. If f and g are two wff, then $f \vee g, f \wedge g, \neg f, f \rightarrow g$, and $f \leftrightarrow g$ are wff. Brackets are used to avoid ambiguity.

Example 4.1.7. 1. $p \wedge \vee q, \vee q, p \vee q \wedge$ are not wff, as they do not make sense.
2. $p \vee q \wedge r$ is not a wff as it is not clear what it means. We use brackets to get $p \vee(q \wedge r)$ or $(p \vee q) \wedge r$ which are wff.
3. $(p \rightarrow q) \rightarrow r,(p \vee \neg q) \rightarrow \neg r, \neg(p \rightarrow q)$ are wff.

Did you notice?

The connectives $\vee, \wedge, \rightarrow$, and \leftrightarrow always connect two old formulae to create a new one. This is why they are called 'binary connectives'. The connective \neg is used on a single old formula to give a new one. So, it is called a 'unary connective'.

Definition 4.1.8. Let \mathcal{A} be the set of assignments to the variables p_{1}, \ldots, p_{k}. A function $f: \mathcal{A} \rightarrow\{T, F\}$ is called a truth function. There are $2^{2^{k}}$ such truth functions.

Example 4.1.9. The table on the left describes a truth function f and that on the right describes the truth table for a particular formula.

p	q	f
T	T	F
T	F	T
F	T	T
F	F	F

p	q	$(p \wedge q) \vee(p \wedge(\neg q))$
T	T	T
T	F	T
F	T	F
F	F	F

ExERCISE 4.1.10. 1. Draw a truth table for the formula $p \wedge(\neg p \rightarrow(p \vee \neg q))$.
2. Can both the formulae $p \rightarrow q$ and $q \rightarrow p$ be false for some assignment on p and q ?

Definition 4.1.11. 1. [Contradiction and tautology] A contradiction (\boldsymbol{F}) is a formula which takes truth value F under each assignment. For example, $p \wedge \neg p$. A tautology (\boldsymbol{T}) is a formula which takes truth value T under each assignment. For example, $p \vee \neg p$.
2. [Equivalence of formulae] Two formulae f and g are said to be equivalent, denoted $f \equiv g$, if they have the same truth table involving all the atomic variables of both f and g. That is, if both f and g carry the same truth values under each assignment to the involved atomic variables.

Example 4.1.12. 1. Is $p \rightarrow q \equiv \neg q \rightarrow \neg p$? Yes, because they have the same truth tables.

p	q	$f=p \rightarrow q$	$g=\neg q \rightarrow \neg p$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

2. Is $p \equiv p \wedge(q \vee(\neg q))$? Yes, because they have the same truth tables.

p	q	$f=p$	$g=p \wedge(q \vee(\neg q))$
T	T	T	T
T	F	T	T
F	T	F	F
F	F	F	F

Remark 4.1.13. 1. There is another way to establish equivalence of two formulae f and g.
We show that f has a truth value T (or F) if and only if g has the same truth value. For example, to show that $p \rightarrow q \equiv \neg q \rightarrow \neg p$, proceed in the following way.
Step 1: Suppose that $p \rightarrow q$ has a truth value F for an assignment a. Then $a(p)=T$ and $a(q)=F$. But then, under that assignment, we have $\neg q$ is T and $\neg p$ is F. That is, under a, we have $\neg q \rightarrow \neg p$ is F.

Step 2: Suppose that $p \rightarrow q$ has a truth value T for an assignment a. Then $a \in$ $\{T T, F T, F F\}$. Under $T T$, we have $\neg p$ is F and $\neg q$ is F, so that $\neg q \rightarrow \neg p$ is T. Under $F T$, we have $\neg p$ is T and $\neg q$ is F, so that $\neg q \rightarrow \neg p$ is T. Under $F F$, we have $\neg p$ is T and $\neg q$ is T, so that $\neg q \rightarrow \neg p$ is T.

Thus, both are equivalent.
2. Let $f\left(p_{1}, \ldots, p_{k}\right)$ be a formula and q_{1}, \ldots, q_{r} be some new atomic variables. Then $f \equiv$ $f \wedge\left(q_{1} \vee\left(\neg q_{1}\right)\right) \wedge \cdots \wedge\left(q_{r} \vee\left(\neg q_{r}\right)\right)$. This can be argued using induction. Thus f can be viewed as a formula involving atomic variables $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{r}$.
3. We have seen that
(a) $p \rightarrow q \equiv \neg p \vee q$, and
(b) $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$.

Thus, the connectives \vee, \wedge and \neg are enough for writing a formula in place of the 5 connectives $\vee, \wedge, \neg, \rightarrow$ and \leftrightarrow.
4. Recall that a formula on variables p, q and r is a truth function. So there are exactly $2^{2^{3}}=2^{8}$ nonequivalent formulae on variables p, q and r.

EXERCISE 4.1.14. Is $p \vee \neg p \equiv q \vee \neg q$?
Definition 4.1.15. [Substitution instance] Suppose B is a formula which involves some variables including p. Then, substituting a formula A for each appearance of the variable p in B, gives us a new formula. This new formula is called a substitution instance of B. We may substitute more than one variables, simultaneously. Note that A may involve old and new variables.

Example 4.1.16. Let $B:(p \rightarrow q) \rightarrow p$. We substitute $p \rightarrow \neg q$ for p, and p for q, in B to obtain the following substitution instance of B.

$$
((p \rightarrow \neg q) \rightarrow p) \rightarrow(p \rightarrow \neg q)
$$

The following result is one of the most fundamental results of the subject.
Theorem 4.1.17. Any substitution instance of a tautology is a tautology.
Proof. Let $P\left(p_{1}, \ldots, p_{k}\right)$ be a tautology. Suppose that we replace each occurrence of p_{1} by a formula f to obtain the formula R. Consider all the atomic variables involved in P and f. View P and R as formulae involving all these atomic variables. Let a be an assignment to these atomic variables.
If f takes the value T on a, then the value of R on a is nothing but the value of $P\left(T, p_{2}, \ldots, p_{k}\right)$ on a, which is T as P is a tautology.
If f takes the value F on a, then the value of R on a is nothing but the value of $P\left(F, p_{2}, \ldots, p_{k}\right)$ on a, which is T as P is a tautology. Thus, R takes the value T under each assignment.

ExErcise 4.1.18. Show that any substitution instance of a contradiction is a contradiction.
Definition 4.1.19. [Functionally complete] A subset S of connectives is called functionally complete/adequate, if each formula has an equivalent formula written only using the connectives in S.

Example 4.1.20. We already know that $S=\{\vee, \wedge, \neg\}$ is adequate.
ExERCISE 4.1.21. 1. Determine which are adequate. (i) $\{\neg, \vee\}$ (ii) $\{\rightarrow, \neg\}$.
2. Fill in the blanks to prove that ' $f \equiv g$ ' if and only if ' $f \leftrightarrow g$ is a tautology'.

Proof. Assume that $f \equiv g$. Let b be an assignment. Then, the value of f and g are
\qquad under b. Thus, the value of $f \leftrightarrow g$ is _under b. As b is an \qquad assignment, we see that $f \leftrightarrow g$ is a \qquad .

Therefore, if f is T under b, then g is T under b. That is, $f \rightarrow g$ and $g \rightarrow f$ are both T under b. Thus, $f \leftrightarrow g$ is T under the assignment b.

Conversely, suppose that $f \leftrightarrow g$ is a \qquad . Assume that $f \not \equiv g$. Then, there is
\qquad under which _ and _ take different \qquad .
So, suppose that f takes T and g takes F under b. Then__ is F under b and hence $f \leftrightarrow g$ takes F under b, a contradiction. A similar contradiction is obtained if f takes F and g takes T under b.

The proof of the next result is left as an exercise for the readers.
Proposition 4.1.22. [Rules] If p, q, r are formulae, then

1. $p \vee q \equiv q \vee p, p \wedge q \equiv q \wedge p$ (commutative)
2. $p \vee(q \vee r) \equiv(p \vee q) \vee r, p \wedge(q \wedge r) \equiv(p \wedge q) \wedge r$ (associative)
3. $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r), p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$ (distributive)
4. $\neg(p \vee q) \equiv \neg p \wedge \neg q, \neg(p \wedge q) \equiv \neg p \vee \neg q$ (De Morgan's law)
5. $p \vee p \equiv p, p \wedge p \equiv p$ (idempotence)
6. $\mathbf{F} \vee p \equiv p, \mathbf{F} \wedge p \equiv \mathbf{F}$
7. $\mathbf{T} \vee p \equiv \mathbf{T}, \mathbf{T} \wedge p \equiv p$
8. $\neg(\neg p) \equiv p$
9. $p \vee(p \wedge q) \equiv p, p \wedge(p \vee q) \equiv p$ (absorption law)

Proof. First six may be proved suing direct arguments and the rest by using the first six.
Discussion 4.1.23. The above rules can be used to simplify a formula or to show equivalence of formulae. For example, $p \rightarrow(q \rightarrow r) \equiv \neg p \vee(\neg q \vee r) \equiv \neg p \vee \neg q \vee r \equiv \neg(p \wedge q) \vee r \equiv(p \wedge q) \rightarrow r$.

Did you notice?

There are 3 ways to prove $f \equiv g$.

1. Using truth table.
2. Arguing that f is false under an assignment (of the variables involved in both) if and only if g is false under the same assignment.
3. Using some of the above rules and by reducing f to g or g to f.

Experiment

Consider the variables p, q, r.
Give a formula which takes value T only on the assignment $T T T$.
Give a formula which takes value T only on the assignment $T T F . \quad(p \wedge q \wedge(\neg r))$
Give a formula which takes value T only on the assignment FTF.
Give a formula which takes value T only on the assignments $T T F$ and $F T F$.
Give a formula which takes value T only on the assignments $T F T, T T F$ and $T F F$.
Give a formula f which takes value T only on the assignments $F T F$ and $F F F$ or whose truth table is the following

p	q	r	f
T	T	T	F
T	T	F	F
T	F	T	F
T	F	F	F
F	T	T	F
F	T	F	T
F	F	T	F
F	F	F	T

Lemma 4.1.24. Let f be a truth function involving the variables p_{1}, \ldots, p_{k}. Then, there is a formula g involving p_{1}, \ldots, p_{k}, whose truth table is described by f.

Proof. If $T \notin \operatorname{rng} f$, then write $q=p_{1} \wedge \neg p_{1} \wedge p_{2} \wedge \cdots \wedge p_{k}$. Otherwise, collect all those assignments b such that $f(b)=T$. Call this set \mathcal{A}_{1}. For each $b \in \mathcal{A}_{1}$, define a formulae $q=r_{1} \wedge r_{2} \wedge \cdots \wedge r_{k}$,
where for $1 \leq j \leq k$,

$$
r_{j}= \begin{cases}p_{j} & \text { if } b\left(p_{j}\right)=T \\ \neg p_{j} & \text { otherwise }\end{cases}
$$

Then, the formulae q takes the value T only on the assignment b. Thus, taking the disjunctions of all such q 's related to each $b \in \mathcal{A}_{1}$, we get the required result.

Exercise 4.1.25. Illustrate 4.1.24 with the truth function f

p	q	f
T	T	T
T	F	T
F	T	F
F	F	F

Definition 4.1.26. [Normal forms] An atomic formula or its negation is called a literal. We say that a formula f is in disjunctive normal form (in short, DNF) if it is expressed as a disjunction of conjunctions of literals. We say that a formula f is in conjunctive normal form (in short, CNF) if it is expressed as a conjunction of disjunctions of literals.

Example 4.1.27. $p, p \vee q, p \vee \neg q,(p \wedge \neg q) \vee \neg r,(p \wedge \neg q) \vee(q \wedge \neg r) \vee(r \wedge s)$ are in DNF. Write 5 formulae in CNF involving p, q, r.

Theorem 4.1.28. Any formula is equivalent to a formulae in DNF. Similarly, Any formula is equivalent to a formulae in CNF.

Proof. The proof of the first assertion follows from Lemma 4.1.24. For the second assertion, we can write one proof in a similar way.
An alternate proof: take f, consider $\neg f$, get a DNF P for $\neg f$, and consider $\neg P$.
Exercise 4.1.29. Write all the truth functions on two variables and write formulae for them.
Definition 4.1.30. [Principal connectives] Let h be a formula. A principal connective in h is defined in the following way.

1. If h is expressed in a format $\neg f$, then \neg is the principal connective of h.
2. If h is expressed in a format $f \vee g$, then \vee is the principal connective of h.
3. If h is expressed in a format $f \wedge g$, then \wedge is the principal connective of h.

EXERCISE 4.1.31. Use induction on the number of connectives to show that any formula is equivalent to a formulae in DNF and a formula in CNF.

Definition 4.1.32. [Dual] The dual P^{*} of a formula P involving the connectives \vee, \wedge, \neg is obtained by interchanging \vee with \wedge and the special variable \mathbf{T} with the special variable \mathbf{F}.

Example 4.1.33. Note that the dual of $\neg(p \vee q) \wedge r$ is $\neg(p \wedge q) \vee r$.

Lemma 4.1.34. Let $A\left(p_{1}, \ldots, p_{k}\right)$ be a formula in the atomic variables p_{i} involving connectives \vee, \wedge and \neg. If $A\left(\neg p_{1}, \ldots, \neg p_{k}\right)$ is obtained by replacing p_{i} with $\neg p_{i}$ in A, then $A\left(\neg p_{1}, \ldots, \neg p_{k}\right) \equiv$ $\neg A^{*}\left(p_{1}, \ldots, p_{k}\right)$.

Proof. Use induction on the number of connectives. If $A=B \vee C$, then

$$
\begin{aligned}
A^{*}=B^{*} \wedge C^{*} & \equiv \neg B\left(\neg p_{1}, \ldots, \neg p_{k}\right) \wedge \neg C\left(\neg p_{1}, \ldots, \neg p_{k}\right) \\
& \equiv \neg(B \vee C)\left(\neg p_{1}, \ldots, \neg p_{k}\right)=\neg A\left(\neg p_{1}, \ldots, \neg p_{k}\right) .
\end{aligned}
$$

The remaining parts are similar and hence left for the reader.
Theorem 4.1.35. Let f, g be formulae using connectives \vee, \wedge and \neg. If $f \equiv g$, then $f^{*} \equiv g^{*}$.
Proof. By Lemma 4.1.34, we note that

$$
f^{*}(\neg b)=\neg f(b)=\neg g(b)=g^{*}(\neg b) \text { for any assignment } b \text {. }
$$

Thus, $f^{*} \equiv g^{*}$.
Discussion 4.1.36. [Tree representation] A formula can be represented by a tree. For example, $(r \vee q) \rightarrow(\neg q \wedge p)$ has the following representation.

Definition 4.1.37. [Polish notation] A formula may be expressed using Polish notation. It is defined inductively as follows.
'Let $P(f)$ denote the Polish notation of f. Then $P(f \vee g)$ is $\vee P(f) P(g), P(f \wedge g)$ is $\wedge P(f) P(g)$, and $P(\neg f)$ is $\neg P(f)$.'

This notation does not use brackets. Here the connectives are written in front of the expressions they connect. Advantage: it takes less space for storage. Disadvantage: it's complicated look.

Example 4.1.38. In Polish notation $(r \vee q) \rightarrow(\neg q \wedge p)$ becomes $\rightarrow \vee r q \wedge \neg q p$.
Exercise 4.1.39. Write a formula involving 8 connectives and the variables p, q, r. Draw it's tree. Write it's Polish notation.

Definition 4.1.40. 1. [Satisfiable] A formula is satisfiable if it is not a contradiction.
2. [Order of operations] To reduce the use of brackets, we fix the order of operations: \neg, $\wedge, \vee, \rightarrow, \leftrightarrow$.

Discussion 4.1.41. There is another way of making a truth table for a formula. Consider $(p \vee q) \vee \neg r$. Draw a table like the following and give the truth values to the atomic formulae. Evaluate the connectives for the subformulae one by one. In this example, the sequence of column operations is: $5,2,4$.

$(p$	\vee	$q)$	\vee	\neg	r
T		T			T
T		T			F
T		F			T
T		F			F
F		T			T
F		T			F
F		F			T
F		F			F

$(p$	\vee	$q)$	\vee	\neg	r
T	T	T	T	F	T
T	T	T	T	T	F
T	T	F	T	F	T
T	T	F	T	T	F
F	T	T	T	F	T
F	T	T	T	T	F
F	F	F	F	F	T
F	F	F	T	T	F

Definition 4.1.42. [Inference] We say g is a logical conclusion of $\left\{f_{1}, \cdots, f_{n}\right\}$ if $\left(f_{1} \wedge\right.$ $\left.f_{2} \wedge \cdots \wedge f_{n}\right) \rightarrow g$ is a tautology. We denote this by $\left\{f_{1}, \ldots, f_{n}\right\} \Rightarrow g$. At times, we write $f_{1}, \ldots, f_{n} \Rightarrow g$ to mean $\left\{f_{1}, \ldots, f_{n}\right\} \Rightarrow g$. Here, g is called the conclusion and $\left\{f_{1}, \ldots, f_{n}\right\}$ is called the hypothesis/premise.

Example 4.1.43. 1. Consider the following three statements.
A : if $x=4$, then discrete math is bad;
B : discrete math is bad;
$C: x=4$.
Does C logically follow from A, B ?
Ans: No. Denote ' $x=4$ ' by p and 'discrete mathematics is bad' by q. Then, the above question is the same as asking whether $\{p \rightarrow q, q\} \Rightarrow p$ is true. That is, whether $P(p, q):=((p \rightarrow q) \wedge q) \rightarrow p$ is a tautology.
To find that, suppose that there is an assignment for which P takes the value F. So, for that assignment, p must be F and $(p \rightarrow q) \wedge q$ must be true.

As $(p \rightarrow q) \wedge q$ is true, q must be T. So, the assignment must be $F T$. Notice that $p \rightarrow q$ has a value T with this assignment. Thus, $P(p, q)$ takes F under $F T$. Hence, it is not a tautology. So, C does not logically follow from A, B.
2. Consider the following three statements.
A : 'if discrete math is bad, then $x=4$ ';
B : 'discrete math is bad';
$C: ' x=4$.
Does C logically follow from A, B ?

Ans: Yes. Denote ' $x=4$ ' by p and 'discrete mathematics is bad' by q. Then, the above question is the same as asking whether $\{q \rightarrow p, q\} \Rightarrow p$ is true. That is, whether $P(p, q):=((q \rightarrow p) \wedge q) \rightarrow p$ is a tautology.

To find that, suppose that there is an assignment for which P takes the value F. So, for that assignment, p must be F and $(q \rightarrow p) \wedge q$ must be true.

As $(q \rightarrow p) \wedge q$ is true, q must be T and $q \rightarrow p$ must be T. So, the assignment must be $F T$. But we see that $q \rightarrow p$ has a value F with this assignment. This is a contradiction.

Thus, there is no assignment for which $P(p, q)$ takes F. Hence, it is a tautology. So C logically follows from A, B.

Definition 4.1.44. We write $f \Leftrightarrow g$ to mean ' $f \Rightarrow g$ and $g \Rightarrow f$ '.

Did you notice?

Let f, g, h be some formulae. Then $f, g \Rightarrow h$ means that 'whenever f and g are T, h is also T '. That is, 'if f and g are T under an assignment, then h is T under that assignment'. Thus ' $f \Leftrightarrow g$ ' is the same as ' $f \equiv g$ '.

Example 4.1.45. 1. Show that $\{\alpha \rightarrow \beta, \beta \rightarrow \gamma, \gamma \rightarrow \delta\} \Rightarrow \alpha \rightarrow \delta$.
Ans: Suppose $\alpha \rightarrow \delta$ is F. Then α is T and δ is F. Assume that all the propositions in the hypothesis are true. As δ is F and $\gamma \rightarrow \delta$ is T, γ must be F. Continuing, we get α is F, a contradiction.
2. Determine validity of the argument.

The meeting can take place if all members are informed in advance and there is quorum (a minimum number of members are present). There is a quorum if at least 15 members are present. Members would have been informed in advance if there was no postal strike. Therefore, if the meeting was canceled, then either there were fewer than 15 members present or there was a postal strike.
A : Let us denote the different statements with symbols, say
m : the meeting takes place;
a : all members are informed;
f : at least fifteen members are present;
q : the meeting had quorum;
p : there was a postal strike.
So, we reformulate the problem: whether $\{(q \wedge a) \rightarrow m, f \rightarrow q, \neg p \rightarrow a\} \Rightarrow \neg m \rightarrow(\neg f \vee p)$?
From first two statements, we get $(f \wedge a) \rightarrow m$. Considering the third statement, we get $(f \wedge \neg p) \rightarrow m$. The conclusion is the contrapositive of this statement.

Alternate. Suppose that conclusion is F. Then m is F, f is T and p is F. Using second statement: q is T. Using third statement: a is T. Using first statement: m is T, a contradiction.

Exercise 4.1.46. 1. List all the nonequivalent formulae involving variables p and q which take truth value T on exactly half of the assignments.
2. We assume $F \leq T$. Let f and g be two truth functions on the variables p_{1}, \ldots, p_{9}. Suppose that for each assignment a, we have $f(a) \leq g(a)$. Does this imply ' $f \rightarrow g$ is a tautology'?
3. Let f and g be two formulae involving the variables p_{1}, \ldots, p_{k}. Prove that ' $f \equiv g$ ' (the same truth table) if and only if ' $f \leftrightarrow g$ is a tautology'.
4. Without using \rightarrow, write an equivalent simplified statement of $(p \rightarrow q) \rightarrow(p \rightarrow(q \rightarrow r))$.
5. Determine which of the following are logically equivalent.
(a) $(p \rightarrow(r \vee s)) \wedge((q \wedge r) \rightarrow s)$.
(b) $((p \vee r) \vee(s \rightarrow p)) \wedge(p \rightarrow(s \rightarrow r))$.
(c) $q \rightarrow s$.
(d) $(s \rightarrow(q \vee r)) \wedge((q \wedge s) \rightarrow r)$.
(e) $((p \vee s) \vee(q \rightarrow p)) \wedge(p \rightarrow(q \rightarrow s))$.
6. Let p be a formula written only using connectives \wedge, \vee and \rightarrow and involving the atomic variables p_{1}, \cdots, p_{k}, for some k. Show that the truth value of p is T under the assignment $f\left(p_{i}\right)=T$, for all i.
7. Is $\{\rightarrow, \vee, \wedge\}$ adequate?
8. Verify the following assertions.
(a) $P \wedge Q \Rightarrow P$
(b) $P \Rightarrow P \vee Q$
(c) $\neg P \Rightarrow P \rightarrow Q$
(d) $\neg(P \rightarrow Q) \Rightarrow P$
(e) $\neg P, P \vee Q \Rightarrow Q$
(f) $P, P \rightarrow Q \Rightarrow Q$
(g) $\neg Q, P \rightarrow Q \Rightarrow \neg P$
(h) $P \rightarrow Q, Q \rightarrow R \Rightarrow P \rightarrow R$
(i) $P \vee Q, P \rightarrow R, Q \rightarrow R \Rightarrow R$
(j) $P \leftrightarrow Q \Leftrightarrow(P \wedge Q) \vee(\neg P \wedge \neg Q)$
(k) $\{p \wedge q, p \vee q\} \Rightarrow q \rightarrow r$
(l) $\{p \rightarrow q, \neg p\} \Rightarrow \neg q$
(m) $\left\{p_{0} \rightarrow p_{1}, p_{1} \rightarrow p_{2}, \ldots, p_{9} \rightarrow p_{10}\right\} \Rightarrow p_{0} \vee p_{5}$.
(n) $\{(\neg p \vee q) \rightarrow r, s \vee \neg q, \neg t, p \rightarrow t,(\neg p \wedge r) \rightarrow \neg s\} \Rightarrow \neg q$.
(o) $\{p \rightarrow q, r \vee s, \neg s \rightarrow \neg t, \neg q \vee s, \neg s,(\neg p \wedge r) \rightarrow u, w \vee t\} \Rightarrow u \wedge w$.
9. If H is a set of formulae, then $H \Rightarrow \alpha \rightarrow \beta$ if and only if $H \cup\{\alpha\} \Rightarrow \beta$.
10. Prove the equivalence of the following in three different ways (truth table, simplification, each is a logical consequence of the other $): p \rightarrow(q \vee r) \equiv(p \wedge \neg q) \rightarrow r$.
11. Determine which of the following conclusions are correct.
(a) If the lecture proceeds, then either blackboard is used or the slides are shown or the tablet pc is used. If the black board is used, then students at the back bench are not comfortable in reading the black board. If the slides are shown, then students are not comfortable with the speed. If the tablet pc is used, then it causes lots of small irritating disturbances to the instructor. The lecture proceeds and if the students are comfortable. So, it is deduced that the instructor faces the disturbances.
(b) There are three persons Mr $X, M r Y$ and $M r Z$ making statements. If $M r X$ is wrong, then Mr Y is right. If Mr Y is wrong, then Mr Z is right. If Mr Z is wrong, then $M r$ X is right. Therefore, some two of them are always right.
12. Consider the set S of all nonequivalent formulae written using two atomic variables p and q. For $f, g \in S$, define $f \leq g$ if $f \Rightarrow g$. Prove that this is a partial order on S. Draw it's Hasse diagram.
13. Consider the set S of all nonequivalent formulae written using three atomic variables p, q, r. For $f, g \in S$ define $f \leq g$ if $f \Rightarrow g$. Let f_{1} and g_{1} be two formulae having the truth tables

p	q	r	f_{1}
T	T	T	T
T	T	F	F
T	F	T	T
T	F	F	T
F	T	T	F
F	T	F	T
F	F	T	F
F	F	F	F

p	q	r	g_{1}
T	T	T	T
T	T	F	F
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	F
F	F	T	T
F	F	F	F

How many nonequivalent formulae h are there such that $\left\{f_{1}, g_{1}\right\} \Rightarrow h$?
14. How many assignments of truth values to p, q, r and w are there for which $((p \rightarrow q) \rightarrow$ $r) \rightarrow w$ is true? Guess a formula in terms of the number of variables.
15. Check the validity of the argument. If discrete math is bad, then computer programming is bad. If linear algebra is good, then discrete math is good. If complex analysis is good, then discrete math is bad. If computer programming is good, then linear algebra is bad. Complex analysis is bad and hence, at least one more subject is bad.

4.2 Predicate logic

Definition 4.2.1. A \boldsymbol{k}-place predicate or propositional function $p\left(x_{1}, \ldots, x_{k}\right)$ is a statement involving the variables x_{1}, \ldots, x_{k}. A truth value can be assigned to a predicate $p\left(x_{1}, \cdots, x_{k}\right)$ for each assignment of x_{1}, \ldots, x_{k} from their respective universe of discourses (in short, UD) (the set of values that x_{i} 's can take is the i-th UD).

Example 4.2.2. Let $p(x)$ mean ' $x>0$ '. Then $p(x)$ is a 1 -place predicate on some UD. Let $p(x, y)$ mean ' $x^{2}+y^{2}=1$ '. Then $p(x, y)$ is a 2 -place predicate on some UD.

Definition 4.2.3. [Quantifiers] We call the symbols \forall and \exists, the quantifiers. Formulae involving them are called quantified formulae. The statement $\forall x p(x)$ is true if for each x (in the UD) the property $p(x)$ is T. The statement $\exists x p(x)$ is T if $p(x)$ is T for some x in the UD.

Example 4.2.4. Let UD be the set of all human beings. Consider the 2-place predicate $F(x, y)$: ' x runs faster than y '. Then

1. $\forall x \forall y F(x, y)$ means 'each human being runs faster than every human being'.
2. $\forall x \exists y F(x, y)$ means 'for each human being there is a human being who runs slower'.
3. $\exists x \exists y F(x, y)$ means 'there is a human being who runs faster than some human being'.
4. $\exists x \forall y F(x, y)$ means 'there is a human being who runs faster than every human being '.

Definition 4.2.5. 1. [Scope of quantifier] In the quantified formulae $\forall x p(x)$ or $\exists x p(x)$ the formula $p(x)$ is called the scope of the quantifier (extent to which that quantification applies).
2. An \boldsymbol{x}-bound part in a formula is a part of the form $\exists x p(x)$ or $\forall x q(x)$. Any occurrence of x in an x-bound part of the formula is a bound occurrence of x. Any other occurrence of x is a free occurrence of x.

Example 4.2.6. In $\exists x p(x, y)$ the occurrence of y is free and both the occurrences of x are bound. In $\forall y \exists x p(x, y)$ all the occurrences of x and y are bound.

Definition 4.2.7. 1. A quantified formulae is well formed if it is created using the following rules.
(a) Any atomic formula (of the form $P, P(x, y), P(x, b, y)$) is a wff.
(b) If A, B are wff's, then $A \vee B, A \wedge B, A \rightarrow B, A \leftrightarrow B$, and $\neg A$ are wff.
(c) If A is a wff and x is any variable, then $\forall x A$ and $\exists x A$ are wff.
2. Let f be a formula. An interpretation (for f) means the process of specifying the UD, specifications of the predicates, and assigning values to the free variables from the UD. By an interpretation of \boldsymbol{f}, we mean the formula f under a given interpretation.

Example 4.2.8. Consider the wff $\forall x p(x, y)$.

1. Take \mathbb{N} as UD. Let $p(x, y)$ specify ' $x>y$ '. Let us assign 1 to the free variable y. Then, we get the interpretation 'each natural number is greater than 1 ' which has the truth value F.
2. Take \mathbb{N} as UD. Let $p(x, y)$ mean ' $x+y$ is an integer', and take $y=2$. Then, we get an interpretation 'when we add 2 to each natural number we get an integer' which has a truth value T.

Discussion 4.2.9. [Translation] We expect to see that 'our developments on logic' help us in drawing appropriate conclusions. In order to do that, we must know how to translate an 'English statement' into a 'formal logical statement' that involves no English words. We may have to introduce appropriate variables and required predicates. We may have to specify the UD, but normally we use the most general UD.

Example 4.2.10. 1. Translate: 'each person in this class room is either a BTech student or an MSc student'.

A: Does the statement guarantee that there is a person in the room?
No. All it says is, if there is a person, then it has certain properties. Let $P(x)$ mean ' x is a person in this class room'; $B(x)$ mean ' x is a BTech student'; and $M(x)$ mean ' x is an MSc student'. Then, the formal expression is $\forall x(P(x) \rightarrow(B(x) \vee M(x)))$.
2. Translate: 'there is a student in this class room who speaks Hindi or English'.

A: Does the statement guarantee that there is a student in the room?
Yes. Let $S(x)$ mean ' x is a student in this class room'; $H(x)$ mean ' x speaks Hindi'; and $E(x)$ mean ' x speaks English'. Then, the formal expression is $\exists x(S(x) \wedge(H(x) \vee E(x)))$. Note that $\exists x(S(x) \rightarrow(H(x) \vee E(x)))$ is not the correct expression. Why?

Remember

$\exists x(S(x) \rightarrow T(x))$ never asserts $S(x)$ BUT $\exists x(S(x) \wedge T(x))$ asserts both $S(x)$ and $T(x)$.
Practice 4.2.11. Translate into formal logic.

1. Every natural number is either the square of a natural number or its square root is irrational.
2. For every real number x there is a real number y such that $x+y=0$.
3. A subset $S \subseteq \mathbb{R}^{n}$ is called compact, if '-write the formal statement here--'.
4. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called continuous at a point a, if '--write the formal statement here--'.
5. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called continuous, if '-wwite the formal statement here--'.
6. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called uniformly continuous, if '--write the formal statement here--'.
7. A subset $S \subseteq \mathbb{R}^{n}$ is called connected, if '--write the formal statement here--'.
8. A set S is called a group, if '--write the formal statement here--'.
9. A subset $S \subseteq \mathbb{R}^{n}$ is called a subspace, if '-wwrite the formal statement here--'.
10. A function $f: S \rightarrow T$ is called a bijection, if '--write the formal statement here--'.
11. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is called a linear transformation, if '--write the formal statement here--'.
12. A function $f:(S, \circ) \rightarrow(T,+)$ is called a group isomorphism, if '—-write the formal statement here--'.
13. A function $f: \mathbb{V} \rightarrow \mathbb{W}$ is called a vector space isomorphism, if '—-write the formal statement here-- ${ }^{\prime}$.

Definition 4.2 .12. A quantified formula is called valid if every interpretation of it has truth value T. Two quantified formulae A and B are called equivalent $(A \equiv B)$ if $A \leftrightarrow B$ is valid.
Example 4.2.13. 1. $\forall x P(x) \vee \exists x \neg P(x)$ is valid.
2. Is $\exists x \exists y p(x, y) \equiv \exists y \exists x p(x, y)$?

A: Yes. Denote $\exists x \exists y p(x, y)$ by L and $\exists y \exists x p(x, y)$ by R. Suppose that $L \rightarrow R$ is F. This means, we have an interpretation in which L is T and R is F. As R is F, we see that $p(x, y)$ is F, for each x, y in the UD. In that case, L is F, a contradiction. So, $L \rightarrow R$ is T. Similarly, $R \rightarrow L$ is T.
3. $\forall x \forall y p(x, y) \equiv \forall y \forall x p(x, y)$. !!
4. $\exists x \forall y p(x, y) \not \equiv \forall y \exists x p(x, y)$. To see this take $p(x, y): x>y$.

Did you notice?

Two quantified formulae A and B are equivalent if and only if their interpretations under 'the same UD, the same specification of predicates, and the same values to the free variables' have the same truth value.
5. Is $\forall x(r(x) \rightarrow \exists y(r(y) \wedge p(x, y))) \equiv \forall x \exists y(r(x) \rightarrow(r(y) \wedge p(x, y)))$?

A: We want to know if

$$
\forall x(r(x) \rightarrow \exists y(r(y) \wedge p(x, y))) \leftrightarrow \forall x \exists y(r(x) \rightarrow(r(y) \wedge p(x, y)))
$$

is valid. Let us see whether

$$
\forall x(r(x) \rightarrow \exists y(r(y) \wedge p(x, y))) \rightarrow \forall x \exists y(r(x) \rightarrow(r(y) \wedge p(x, y)))
$$

is valid. Suppose that this is invalid. So there is an interpretation such that Right hand side is F and Left hand side is T . As Right hand side is F , we see that $\exists x$, say x_{0}, for which $\exists y(r(x) \rightarrow(r(y) \wedge p(x, y)))$ is F. That is, $\forall y$ the formula $r\left(x_{0}\right) \rightarrow\left(r(y) \wedge p\left(x_{0}, y\right)\right)$ is F. That is, $r\left(x_{0}\right)$ is T and for each y we see that $r(y) \wedge p\left(x_{0}, y\right)$ is F. That is, $r\left(x_{0}\right)$ is T and $\exists y\left(r(y) \wedge p\left(x_{0}, y\right)\right)$ is F . That is, the formula $r\left(x_{0}\right) \rightarrow \exists y\left(r(y) \wedge p\left(x_{0}, y\right)\right)$ is F . That is, $\forall x(r(x) \rightarrow \exists y(r(y) \wedge p(x, y)))$ is F , a contradiction. The other part is an exercise.
Alternate. Take $A:=r(x) \rightarrow \exists y(r(y) \wedge p(x, y))$ and $B:=\exists y(r(x) \rightarrow(r(y) \wedge p(x, y)))$. Consider an x_{0} in the UD. If $r\left(x_{0}\right)$ is F , Then A and B both have value T. If $r\left(x_{0}\right)$ is T. Then notice that $r\left(x_{0}\right) \rightarrow \exists y\left(r(y) \wedge p\left(x_{0}, y\right)\right)$ and $\exists y\left(r\left(x_{0}\right) \rightarrow\left(r(y) \wedge p\left(x_{0}, y\right)\right)\right)$ have the same truth value.
Thus $A \equiv B$. Hence $\forall x A \equiv \forall x B$.
6. Any student who appears in the exam and gets a score below 30 , gets an F grade. $\mathrm{Mr} x_{0}$ is a student who has not written the exam. Therefore, x_{0} should get an F grade. Do you agree?

A: Let $S(x)$ mean ' x is a student', $E(x)$ mean ' x writes the exam', $B(x)$ mean ' x gets a score below 30 ', and $F(x)$ mean ' x gets F grade'.
We want to see whether $\left\{\forall x[S(x) \wedge E(x) \wedge B(x) \rightarrow F(x)], S\left(x_{0}\right) \wedge \neg E\left(x_{0}\right)\right\} \Rightarrow F\left(x_{0}\right)$?
Take the following interpretation: $S(x)$ is ' x is a positive real number', $E(x)$ is ' x is a rational number', $B(x)$ is ' x is an integer', $F(x)$ is ' x is a natural number', and $x_{0}=\sqrt{2}$.

In this interpretation, statements in the premise mean 'every positive integer is a natural number' and ' $\sqrt{2}$ is a positive real number which is not rational'. They both are true. Whereas the conclusion means ' $\sqrt{2}$ is a natural number' which is false. So, the argument is incorrect.
7. Translate the following into formal statements.
'All scientists are human beings. Therefore, all children of scientists are children of human beings.'

A: Let $S x$: ' x is a scientist'; $H x:{ }^{\prime} x$ is a human being' and $C x y: x$ is a child of y.
Let the hypothesis be $\forall x(S x \rightarrow H x)$. Then, the possible translations of the conclusion are the following.
(a) $\forall x(\exists y(S y \wedge C x y) \rightarrow \exists z(H z \wedge C x z))$. It means 'for each x, if x has a scientist father, then x has a human father'.
(b) $\forall x[\forall y(S y \wedge C x y) \rightarrow \forall z(H z \wedge C x z)]$. This is wrong, as the statement means 'for all x, if x is a common child of all scientists, then x is a common child of all human beings'.
(c) $\forall x(S x \rightarrow \forall y(C y x \rightarrow \exists z(H z \wedge C y z)))$. This means 'for each x, if x is a scientist, then each child of x has a human father'.
(d) $\forall x \forall y(S x \wedge C y x) \rightarrow \forall x \forall y(H x \wedge C x y)$. What? This means 'if each x is a scientist and each y is a child of x (including x it self!), then each x is a human being and each y is a child of x.

EXERCISE 4.2.14. 1. Write a formal definition of $\lim _{x \rightarrow a} f(x) \neq l$.
2. Is $\exists x[p(x) \wedge q(x)] \rightarrow \exists x p(x) \wedge \exists x q(x)$ valid? Is its converse valid?
3. [common ones] If r does not involve x, then establish the assertions.
(a) $\neg \forall x p(x) \equiv \exists x \neg p(x) ; \quad \neg \exists x p(x) \equiv \forall x \neg p(x)$
(b) $\exists x(p(x) \vee q(x)) \equiv \exists x p(x) \vee \exists x q(x) ; \quad \exists x(p(x) \wedge q(x)) \Rightarrow \exists x p(x) \wedge \exists x q(x)$.
(c) $\forall x(p(x) \wedge q(x)) \equiv \forall x p(x) \wedge \forall x q(x)$; $\quad \forall x(p(x) \vee q(x)) \Leftarrow \forall x p(x) \vee \forall x q(x)$.
(d) $\forall x(r \vee q(x)) \equiv r \vee \forall x q(x) ; \quad \forall x(r \rightarrow q(x)) \equiv r \rightarrow \forall x q(x)$
(e) $\exists x(r \wedge q(x)) \equiv r \wedge \exists x q(x) ; \quad \exists x(r \rightarrow q(x)) \equiv r \rightarrow \exists x q(x)$.
(f) $\forall x p(x) \rightarrow r \equiv \exists x(p(x) \rightarrow r) ; \quad \exists x p(x) \rightarrow r \equiv \forall x(p(x) \rightarrow r)$.
4. Translate and check for validity of the following arguments.
(a) Every rational number has either a terminating decimal representation or a nonterminating recurring decimal representation. The square root of a natural number either has a decimal representation which is terminating or has a decimal representation which is nonterminating and nonrecurring. The square root of all natural numbers which are squares have terminating decimal representation. Therefore, the square root of a natural number which is not a square is an irrational number.
(b) For any two algebraic numbers a and $b, a \neq 0,1$ and b irrational, we have that a^{b} is transcendental. The number i (imaginary unit) is irrational and algebraic. The number i is not equal to 0 or 1. Therefore, the number i^{i} is transcendental.
5. (a) Give an interpretation to show that $\forall x(r(x) \rightarrow \exists y(r(y) \wedge p(x, y)))$ is not valid.
(b) Give an interpretation to show the incorrectness of $\forall x(p(x) \rightarrow q(x)) \Rightarrow \exists x(\neg p(x) \rightarrow$ $\neg q(x))$.
6. Write a formal statement taking UD:= all students in all IIT's in India, for the following. 'For each student in IITG there is a student in IITG with more CPI.'
7. Let $p(x): x$ is a rational number, and $q(x): x$ is a real number. Translate the following statements into English.
(a) $\forall x(p(x) \rightarrow q(x))$
(b) $\exists x(\neg p(x) \wedge q(x))$
(c) $\forall x(p(x) \wedge(x>2)) \rightarrow \forall x(q(x) \wedge(x<2))$
(d) $\exists \epsilon>0(\forall \delta>0(0<|x-a|<\delta \rightarrow|f(x)-l|<\epsilon))$
8. Take the most general UD. Check whether the following conclusion is valid or not.

Each student writes the exam using blue ink or black ink. A student who writes the exam using black ink and does not write his/her roll number gets an F grade. A student who writes the exam using blue ink and does not have his/her ID card gets an F grade. A student who has his/her ID card has written the exam with black ink. Therefore, a student who passes the exam must have written his roll number.

Ans: Let $S(x): x$ is a student, $B(x): x$ writes the exam using blue ink, $B l(x): x$ writes the exam using black ink, $R(x): x$ writes his/her roll number, $I(x): x$ has his/her ID card, $F(x): x$ gets an F grade. We have to determine, whether the following conclusion is valid. (Continue.)

Chapter 5

Lattices and Boolean Algebra

5.1 Lattices

Discussion 5.1.1. In a poset, is it necessary that two elements x, y should have a common upper bound?
Ans: No. Take [6] with 'divides' partial order. The elements 5 and 3 have no common upper bound.
In a poset, if a pair $\{x, y\}$ has at least one upper bound, is it necessary that $\{x, y\}$ should have a lub?

Ans: No. Consider the third poset described by it's Hasse diagram in Figure 5.1. Then, the pair $\{a, b\}$ has c, d as upper bounds, but there is no lub of $\{a, b\}$.

a distributive lattice

a non-distributive lattice

not a lattice

Figure 5.1: Hasse diagrams

Definition 5.1.2. [Lattice]

1. A poset (L, \leq) is called a lattice if each pair $x, y \in L$ has a lub denoted ' $x \vee y$ ' and a glb denoted ' $x \wedge y$ '.
2. A lattice is called a distributive lattice if it satisfies the following two properties.

$$
\left.\begin{array}{l}
a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) . \\
a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c) .
\end{array}\right\} \text { distributive laws }
$$

Example 5.1.3. 1. Let $L=\{0,1\} \subseteq \mathbb{Z}$ and define $a \vee b=\max \{a, b\}$ and $a \wedge b=\min \{a, b\}$. Then, L is a chain as well as a distributive lattice.
2. The set \mathbb{N} with usual order and $\vee:=\max$ and $\wedge:=\min$ is a distributive lattice. We consider two cases to verify that $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$. The second distributive identity is left as an exercise for the reader.
(a) Case 1: $a \geq \min \{b, c\}$. Then, either $a \geq b$ or $a \geq c$, say $a \geq b$. Hence,

$$
\begin{aligned}
a \vee(b \wedge c) & =\max \{a, \min \{b, c\}\} \\
& =a=\min \{\max \{a, b\}=a, \max \{a, c\} \geq a\}=(a \vee b) \wedge(a \vee c) .
\end{aligned}
$$

(b) Case 2: $a<\min \{b, c\}$. Then, $a<b$ and $a<c$. Hence,

$$
\begin{aligned}
a \vee(b \wedge c) & =\max \{a, \min \{b, c\}\} \\
& =\min \{b, c\}=\min \{\max \{a, b\}=b, \max \{a, c\}=c\}=(a \vee b) \wedge(a \vee c) .
\end{aligned}
$$

3. Prove that the first figure in Figure 5.1 is a distributive lattice.
4. Prove that the second figure in Figure 5.1 is a lattice but not a distributive lattice.
5. Let $S=\{a, b, c\}$. On $\mathcal{P}(S)$, we define $A \vee B=A \cup B$ and $A \wedge B=A \cap B$. Then, it can be easily verified that $\mathcal{P}(S)$ is a lattice.
6. Fix a positive integer n and let $D(n)$ denote the poset obtained using the 'divides' partial order with $\vee:=\mathrm{Icm}$ and $\wedge:=\mathrm{gcd}$. Then, prove that $D(n)$ is a distributive lattice. For example, for $n=12,30$ and 36 , the corresponding lattices are shown below.

EXERCISE 5.1.4. 1. Fix a prime p and a positive integer n. Draw the Hasse diagram of $D\left(p^{n}\right)$. Does this correspond to a chain? Give reasons for your answer.
2. Let n be a positive integer. Then, prove that $D(n)$ is a chain if and only if $n=p^{m}$, for some prime p and a positive integer m.
3. Let (X, f) be a nonempty chain with $\vee:=$ lub and $\wedge:=\mathrm{glb}$. Is it a distributive lattice?

Proposition 5.1.5. [properties of a lattice] Let (L, \leq) be a lattice. Then, the following statements are true.
(a) The operations \vee and \wedge are idempotent, i.e., $\operatorname{lub}\{a, a\}=a$ and $\operatorname{glb}\{a, a\}=a$.
(b) \vee commutative (so is \wedge).
(c) \vee is associative (so is \wedge).
(d) $a \wedge(a \vee b)=a=a \vee(a \wedge b)$ [absorption], i.e., ${ }^{\prime} \operatorname{glb}\{a, \operatorname{lub}\{a, b\}\}=a=\operatorname{lub}\{a, \operatorname{glb}\{a, b\}\}^{\prime}$.
(e) $a \leq b \Leftrightarrow a \vee b=b \Leftrightarrow a \wedge b=a$.
(f) $b \leq c \Rightarrow\{a \vee b \leq a \vee c, a \wedge b \leq a \wedge c\}$ [isotonicity].
(f1) $\{a \leq b, c \leq d\} \Rightarrow\{a \vee c \leq b \vee d, a \wedge c \leq b \wedge d\}$.
$(g) a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c), a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c)$ [distributive inequalities].
(h) $a \leq c \Leftrightarrow a \vee(b \wedge c) \leq(a \vee b) \wedge c$ [modular inequality].

Proof. We prove only a few parts. The rest are left for the reader.
(c) Let $d=a \vee(b \vee c)$. Then, d is the lub of $\{a, b \vee c\}$. Thus, d is an upper bound of both $\{a, b\}$ and $\{a, c\}$. So, $d \geq a \vee b$ and $d \geq a \vee c$. Therefore, $d \geq a \vee b$ and $d \geq c$ and hence d an upper bound of $\{a \vee b, c\}$. So, d is greater or equals to the lub of $\{a \vee b, c\}$, i.e., $d \geq(a \vee b) \vee c$. Thus, the first part of the result follows.
(e) Let $a \leq b$. As b is an upper bound of $\{a, b\}$, we have $a \vee b=\operatorname{lub}\{a, b\} \leq b$. Also, $a \vee b$ is an upper bound of $\{a, b\}$ and hence $a \vee b \geq b$. So, we get $a \vee b=b$. Conversely, let $a \vee b=b$. As $a \vee b$ is an upper bound of $\{a, b\}$, we have $a \leq a \vee b=b$. Thus, the first part of the result follows.
(f) Let $b \leq c$. Note that $a \vee c \geq a$ and $a \vee c \geq c \geq b$. So, $a \vee c$ is an upper bound for $\{a, b\}$. Thus, $a \vee c \geq \operatorname{lub}\{a, b\}=a \vee b$ and hence the prove of the first part is over.
(f1) Using isotonicity, we have $a \vee c \leq b \vee c \leq b \vee d$. Similarly, using isotonicity again, we have $a \wedge c \leq b \wedge c \leq b \wedge d$.
(g) Note that $a \leq a \vee b$ and $a \leq a \vee c$. Thus, $a=a \wedge a \leq(a \vee b) \wedge(a \vee c)$. As $b \leq a \vee b$ and $c \leq a \vee c$, we get $b \wedge c \leq(a \vee b) \wedge(a \vee c)$. Now using (f1), we obtain the required result, i.e., $a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c)$.
(h) Let $a \leq c$. Then, $a \vee c=c$ and hence by the 'distributive inequality', we have $a \vee(b \wedge$ $c) \leq(a \vee b) \wedge(a \vee c)=(a \vee b) \wedge c$. Conversely, let $a \vee(b \wedge c) \leq(a \vee b) \wedge c$. Then, $a \leq a \vee(b \wedge c) \leq(a \vee b) \wedge c \leq c$ and the required result follows.

Practice 5.1.6. Show that in a lattice one distributive equality implies the other.
Definition 5.1.7. If $\left(L_{i}, \leq_{i}\right), i=1,2$ are lattices with $\vee:=\mathrm{lub}$ and $\wedge:=\mathrm{glb}$. Then, $\left(L_{1} \times L_{2}, \leq\right)$ is a poset with $a=\left(a_{1}, a_{2}\right) \leq\left(b_{1}, b_{2}\right)=b$ if $a_{1} \leq_{1} b_{1}$ and $a_{2} \leq_{2} b_{2}$, that is, if b dominates a entrywise. In this case, we see that $a \vee b=\left(a_{1} \vee_{1} b_{1}, a_{2} \vee_{2} b_{2}\right)$ and $a \wedge b=\left(a_{1} \wedge_{1} b_{1}, a_{2} \wedge_{2} b_{2}\right)$. Thus $\left(L_{1} \times L_{2}, \leq\right)$ is a lattice, called the direct product of $\left(L_{i}, \leq_{i}\right)$, for $i=1,2$.

Example 5.1.8. 1. Consider $L=\{0,1\}$ with usual order. The set of all binary strings L^{n} of length n is a poset with the order $\left(a_{1}, \ldots, a_{n}\right) \leq\left(b_{1}, \ldots, b_{n}\right)$ if $a_{i} \leq b_{i}$, $\forall i$. This is the n-fold direct product of L. It is called the lattice of \boldsymbol{n}-tuples of $\mathbf{0}$ and 1 .
2. Consider the lattices [3] and [4] with usual orders. Hasse diagram of the direct product $[3] \times[4]$ is given below.

Practice 5.1.9. Consider \mathbb{N} with the usual order. The lattice order defined on \mathbb{N}^{2} as a direct product is different from the lexicographic order on \mathbb{N}^{2}. Draw pictures for all $(a, b) \leq(5,6)$ in both the orders to see the argument.

Proposition 5.1.10. The direct product of two distributive lattices is a distributive lattice.
Proof. The direct product of two lattices is a lattice by definition. Note that

$$
\begin{aligned}
{\left[\left(a_{1}, b_{1}\right) \vee\left(a_{2}, b_{2}\right)\right] \wedge\left(a_{3}, b_{3}\right) } & =\left(a_{1} \vee a_{2}, b_{1} \vee b_{2}\right) \wedge\left(a_{3}, b_{3}\right) \\
& =\left(\left(a_{1} \vee a_{2}\right) \wedge a_{3},\left(b_{1} \vee b_{2}\right) \wedge b_{3}\right) \\
& =\left(\left(a_{1} \wedge a_{3}\right) \vee\left(a_{2} \wedge a_{3}\right),\left(b_{1} \wedge b_{3}\right) \vee\left(b_{2} \wedge b_{3}\right)\right) \\
& =\left(\left(a_{1} \wedge a_{3}\right),\left(b_{1} \wedge b_{3}\right)\right) \vee\left(\left(a_{2} \wedge a_{3}\right),\left(b_{2} \wedge b_{3}\right)\right) \\
& =\left(\left(a_{1}, b_{1}\right) \wedge\left(a_{3}, b_{3}\right)\right) \vee\left(\left(a_{2}, b_{2}\right) \wedge\left(a_{3}, b_{3}\right)\right)
\end{aligned}
$$

Definition 5.1.11. Let $\left(L_{i}, \leq_{i}\right), i=1,2$ be two lattices. A function $f: L_{1} \rightarrow L_{2}$ satisfying $f\left(a \vee_{1} b\right)=f(a) \vee_{2} f(b)$ and $f\left(a \wedge_{1} b\right)=f(a) \wedge_{2} f(b)$ is called a lattice homomorphism. Furthermore, if f is a bijection, then it is called a lattice isomorphism.

Example 5.1.12. 1. Let D be the set of all words in our English dictionary with 'dictionary ordering'. Then, prove that D is a lattice. Now, consider the set S of all words in D which are of length at most six or first-part-words of length six. Note that S is a lattice again. Define $f: D \rightarrow S$ as $f(d)=d$ if d has length at most six, otherwise $f(d)$ is the first-part-word of length 6 of d. Then, f is a homomorphism. It is not an isomorphism as $f($ stupid $)=f($ stupidity $)$.
2. Consider the lattice \mathbb{N} with usual order. Let $S=\{0,1,2\}$ with usual order. Let $f: \mathbb{N} \rightarrow S$ be a homomorphism. If $f(m)=0$ and $f(n)=1$, then $m \leq n$, or else, we have

$$
0=f(m)=f(m \vee n) \neq f(m) \vee f(n)=0 \vee 1=1
$$

Thus, the map f must have one of the following forms. Draw pictures to understand this.
(a) $f^{-1}(0)=\mathbb{N}$.
(b) $f^{-1}(0)=[k]$ and $f^{-1}(1)=\{k+1, \ldots\}$.
(c) $f^{-1}(0)=[k], f^{-1}(1)=[r] \backslash[k]$ and $f^{-1}(2)=\mathbb{N} \backslash[r+k]$.

Definition 5.1.13. A lattice (L, \leq) is complete if $\vee A$ (lub of A) and $\wedge A$ (glb of A) exist in L, for each nonempty subset A of L.

Example 5.1.14. 1. Verify that every finite lattice is complete.
2. Every complete lattice has a least element $\mathbf{0}$ and a greatest element 1. Any lattice with these two elements is called a bounded lattice.
3. The set $[0,5]$ with usual order is a bounded and complete lattice. So, is the set $[0,1) \cup[2,3]$.
4. The set $(0,5]$ is a lattice which is neither bounded nor complete.
5. The set $[0,1) \cup(2,3]$ is a bounded lattice, though not complete.
6. The set \mathbb{R} with usual order is a lattice. It is not complete in the lattice 'sense'. It is 'conditionally complete', that is, for every bounded nonempty subset glb and lub exist. Can you think of a reason which implies the importance of the condition 'non-emptiness'?

7. Fix $n \in \mathbb{N}$ and let $p_{1}, p_{2}, \ldots, p_{n}$ be n distinct primes. Prove that the lattice $D(N)$, for $N=p_{1} p_{2} \cdots p_{n}$ is isomorphic to the lattice L^{n} (the lattice of n-tuples of 0 and 1) and to the lattice $\mathcal{P}(S)$, where $S=\{1,2, \ldots, n\}$. The Hasse diagram for $n=3$ is shown above.

Definition 5.1.15. [Complement] Let (L, \leq) be a bounded lattice. Then, a complement of $b \in L$ is an element (if it exists) $c \in L$ such that $b \vee c=\mathbf{1}$ and $b \wedge c=\mathbf{0}$. The lattice is called complemented if every element has at least one complement. We shall use $\neg b$ to denote $\underline{\mathrm{b}}$, a complement of b.

Example 5.1.16. 1. The interval $[0,1]$ with usual ordering is a distributive lattice but not complemented.
2. Verify the captions of the two figures given below. Also, compute $\neg 0, \neg a, \neg b, \neg c$, and $\neg 1$.

Complemented but NOT distributive

Distributive but NOT complemented

Discussion 5.1.17. [The comparison table] Let (L, \leq) be a lattice and let $a, b, c \in L$. Then, the following table lists the properties that hold (make sense) in the specified type of lattices.

Properties	Lattice type
\vee, \wedge are idempotent	any lattice
\checkmark, \wedge are commutative	any lattice
\vee, \wedge are associative	any lattice
[absorption] $a \wedge(a \vee b)=a=a \vee(a \wedge b)$	any lattice
$a \leq b \Leftrightarrow a \wedge b=a \Leftrightarrow a \vee b=b$	any lattice
[isotonicity] $b \leq c \Rightarrow\{a \vee b \leq a \vee c, a \wedge b \leq a \wedge c\}$	any lattice
[distributive inequalities] $\begin{aligned} & a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c) \\ & a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c) \end{aligned}$	any lattice
[modular inequality] $a \leq c \Leftrightarrow a \vee(b \wedge c) \leq(a \vee b) \wedge c$	any lattice
$\mathbf{0}$ is unique; $\mathbf{1}$ is unique	bounded lattice !!
if a is a complement of b, then b is also a complement of a	bounded lattice !!
$\neg \mathbf{0}$ is unique and it is $\mathbf{1} ; ~ \neg \mathbf{1}$ is unique and it is $\mathbf{0}$	bounded lattice !!
an element a has a unique complement	distributive complemented lattice !!
[cancellation] $\left\{\begin{array}{l}a \vee c=b \vee c, a \vee \neg c=b \vee \neg c\} \Rightarrow a=b \\ a \wedge c=b \wedge c, a \wedge \neg c=b \wedge \neg c\} \Rightarrow a=b\end{array}\right.$	distributive complemented lattice
$\begin{array}{ll} \hline \text { [DeMorgan] } & \neg(a \vee b)=\neg a \wedge \neg b \\ & \neg(a \wedge b)=\neg a \vee \neg b \end{array}$	distributive complemented lattice
$\begin{aligned} & a \vee \neg b=\mathbf{1} \Leftrightarrow a \vee b=a \\ & a \wedge \neg b=\mathbf{0} \Leftrightarrow a \wedge b=a \end{aligned}$	distributive complemented lattice

Proof. We will only prove the properties that appear in the last three rows. The other properties are left as an exercise for the reader. To prove the cancellation property, note that

$$
b=b \vee \mathbf{0}=b \vee(c \wedge \neg c)=(b \vee c) \wedge(b \vee \neg c)=(a \vee c) \wedge(a \vee \neg c)=a \vee(c \wedge \neq c)=a \vee \mathbf{0}=a
$$

and

$$
b=b \wedge \mathbf{1}=b \wedge(c \vee \neg c)=(b \wedge c) \vee(b \wedge \neg c)=(a \wedge c) \vee(a \wedge \neg c)=a \wedge(c \vee \neg c)=a \wedge \mathbf{1}=a .
$$

To prove the DeMorgan's property, note that

$$
(a \vee b) \vee(\neg a \wedge \neg b)=(a \vee b \vee \neg a) \wedge(a \vee b \vee \neg b)=\mathbf{1} \wedge \mathbf{1}=\mathbf{1},
$$

and

$$
(a \vee b) \wedge(\neg a \wedge \neg b)=(a \wedge \neg a \wedge \neg b) \vee(b \wedge \neg a \wedge \neg b)=\mathbf{0} \vee \mathbf{0}=\mathbf{0} .
$$

Hence, by Definition 5.1.15, we get $\neg(a \vee b)=\neg a \wedge \neg b$. Similarly, note that $(a \wedge b) \vee(\neg a \vee \neg b)=$ $(a \vee \neg a \vee \neg b) \wedge(b \vee \neg a \vee \neg b)=\mathbf{1} \wedge \mathbf{1}=\mathbf{1}$ and $(a \wedge b) \wedge(\neg a \vee \neg b)=(a \wedge b \wedge \neg a) \vee(a \wedge b \wedge \neg b)=\mathbf{0} \wedge \mathbf{0}=\mathbf{0}$.

Thus, by Definition 5.1.15, we again get $\neg(a \wedge b)=(\neg a \vee \neg b)$. To prove the next assertion, note that if $a \vee \neg b=\mathbf{1}$, then

$$
a=a \vee(b \wedge \neg b)=(a \vee b) \wedge(a \vee \neg b)=(a \vee b) \wedge \mathbf{1}=a \vee b .
$$

Conversely, if $a=a \vee b$, then $a \vee \neg b=(a \vee b) \vee \neg b=\mathbf{1}$. On similar lines, one completes the proof of the second part and is left as an exercise for the reader.
Exercise 5.1.18. 1. Prove that every linearly ordered set is distributive.
2. Draw the Hasse diagrams of $[3] \times[4]$ with dictionary order and the lattice order $((m, n) \leq$ (p, q) if $m \leq p$ and $n \leq q)$.
3. Give a partial order on \mathbb{N} to make it a bounded lattice. You may draw Hasse diagram representing it.
4. Does there exist a partial order on \mathbb{N} for which each nonempty subset has finitely many (at least one) upper bounds and finitely many (at least one) lower bounds?
5. Consider the lattice \mathbb{N}^{2} with lexicographic order. Is it isomorphic to the direct product of (\mathbb{N}, \leq) with itself, where \leq is the usual order?
6. Show that $\{0,1,2, \ldots\}$ is a complete lattice under divisibility relation (allow (0,0) in the relation). Characterize those sets A for which $\vee A=0$.
7. Draw as many Hasse diagrams of non-isomorphic lattices of size 6 as you can.
8. Is the lattice $[2] \times[2] \times[2] \times[2]$ isomorphic to $[4] \times[4]$?
9. Prove/Disprove: If L is a lattice which is not complete, then $\overline{\bar{L}} \geq \overline{\bar{N}}$.
10. Draw the Hasse diagram of a finite complemented lattice which is not distributive.
11. How many lattice homomorphisms are there from [2] to [9]?

5.2 Boolean Algebras

Definition 5.2.1. [Boolean algebra] A Boolean algebra is a set S which is closed under the binary operations \vee (called the join) and \wedge (called the meet) and for each $x, y, z \in S$, satisfies the following properties.

1. $x \vee y=y \vee x, x \wedge y=y \wedge x$ [commutative] .
2. $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z), x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ [distributive] .
3. $\exists \mathbf{0}, \mathbf{1} \in S$ such that $x \vee \mathbf{0}=x, x \wedge \mathbf{1}=x$ [identity elements].
4. For each $x \in S, \exists y \in S$ such that $x \vee y=\mathbf{1}$ and $x \wedge y=\mathbf{0}$ [inverse] .

Proposition 5.2.2. Let S be a Boolean algebra. Then, the following statements are true.

1. Elements $\mathbf{0}$ and $\mathbf{1}$ are unique.
2. For each $s \in S, \neg s$ is unique. Therefore, for each $x \in S, \neg x$ is called the inverse of x.
3. If y is the inverse of x, then x is the inverse of y. That is, $x=\neg(\neg x)$.

Proof.

1. Let $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ be two such elements. Then, $\mathbf{0}_{1} \vee x=x$ and $x=x \vee \mathbf{0}_{2}$, for all $x \in S$. Hence, $\mathbf{0}_{1}=\mathbf{0}_{1} \vee \mathbf{0}_{2}=\mathbf{0}_{2}$. Thus, the required result follows. A similar argument implies that $\mathbf{1}$ is unique.
2. Suppose there exists $t, r \in S$ such that $s \vee t=\mathbf{1}, s \wedge t=\mathbf{0}, s \vee r=\mathbf{1}$ and $s \wedge r=\mathbf{0}$. Then,

$$
t=t \wedge \mathbf{1}=t \wedge(s \vee r)=(t \wedge s) \vee(t \wedge r)=\mathbf{0} \vee(t \wedge r)=(s \wedge r) \vee(t \wedge r)=(s \vee t) \wedge r=\mathbf{1} \wedge r=r .
$$

3. It directly follows from the definition of 'inverse'.

Example 5.2.3. 1. Let $S \neq \emptyset$. Then, $P(S)$ is a Boolean algebra with $\vee=\cup, \wedge=\cap$, $\neg A=A^{c}, \mathbf{0}=\emptyset$ and $\mathbf{1}=S$. So, we have Boolean algebras of finite size as well as of uncountable size.
2. Take $S=\{n \in \mathbb{N}: n \mid 30\}$ with $a \vee b=\operatorname{Icm}(a, b), a \wedge b=\operatorname{gcd}(a, b), \neg a=\frac{30}{a}, \mathbf{0}=1$ and $\mathbf{1}=30$. It is a Boolean algebra.
3. Let $B=\{T, F\}$ with $\mathbf{0}=F, \mathbf{1}=T$ and with usual \vee, \wedge, \neg. It is a Boolean algebra.
4. Let B be the set of all truth functions involving the variables p_{1}, \ldots, p_{n}, with usual \vee, \wedge, \neg. Take $\mathbf{0}=\mathbf{F}$ and $\mathbf{1}=\mathbf{T}$. This is the free Boolean algebra on the generators p_{1}, \ldots, p_{n}.
5. The class of finite length formulae involving variables p_{1}, p_{2}, \ldots is a countable infinite Boolean algebra with usual operations.

Observation.

The rules of Boolean algebra treat $(\vee, \mathbf{0})$ and $(\wedge, \mathbf{1})$ equally. Notice that the second part of the rules in Definition 5.2 .1 can be obtained by replacing \vee with \wedge and $\mathbf{0}$ with $\mathbf{1}$. Thus, any statement that one can derive from these rules has a dual version which is derivable from the rules. This is called the principle of duality.

Theorem 5.2.4. [Rules] Let (S, \vee, \wedge, \neg) be a Boolean algebra. Then, the following rules, as well as their dual, hold true.

1. $\neg 0=1$.
2. For each $s \in S, s \vee s=s$ [idempotence].
3. For each $s \in S, s \vee \mathbf{1}=\mathbf{1}$.
4. For each $s, t \in S, s \vee(s \wedge t)=s$ [absorption] .
5. If $s \vee t=r \vee t$ and $s \vee \neg t=r \vee \neg t$, then $s=r$ [cancellation] .
6. $(s \vee t) \vee r=s \vee(t \vee r)$ [associative] .

Proof. We give the proof of the first part of each item and that of its dual is left for the reader.

1. $\mathbf{1}=\mathbf{0} \vee(\neg \mathbf{0})=\neg \mathbf{0}$.
2. $s=s \vee \mathbf{0}=s \vee(s \wedge \neg s)=(s \vee s) \wedge(s \vee \neg s)=(s \vee s) \wedge \mathbf{1}=(s \vee s)$.
3. $\mathbf{1}=s \vee \neg s=s \vee(\neg s \wedge \mathbf{1})=(s \vee \neg s) \wedge(s \vee \mathbf{1})=\mathbf{1} \wedge(s \vee \mathbf{1})=s \vee \mathbf{1}$.
4. $s \vee(s \wedge t)=(s \wedge \mathbf{1}) \vee(s \wedge t)=s \wedge(\mathbf{1} \vee t)=s \wedge \mathbf{1}=s$.
5. $s=s \vee \mathbf{0}=s \vee(t \wedge \neg t)=(s \vee t) \wedge(s \vee \neg t)=(r \vee t) \wedge(r \vee \neg t)=r \vee(t \wedge \neg t)=r \vee \mathbf{0}=r$.
6. We will prove it using absorption and cancellation. Using absorption, $(s \vee t) \wedge s=s$ and $s \vee(r \wedge s)=s$. Thus, $((s \vee t) \vee r) \wedge s=((s \vee t) \wedge s) \vee(r \wedge s)=s \vee(r \wedge s)=s$. Using absorption, we also have $(s \vee(t \vee r)) \wedge s=s$ and hence

$$
(s \vee(t \vee r)) \wedge s=((s \vee t) \vee r) \wedge s
$$

Now, we see that $[s \vee(t \vee r)] \wedge \neg s=\mathbf{0} \vee[(t \vee r) \wedge \neg s]=(t \wedge \neg s) \vee(r \wedge \neg s)$ and on similar lines, $[(s \vee t) \vee r] \wedge \neg s=(t \wedge \neg s) \vee(r \wedge \neg s)$. Thus, we again have

$$
(s \vee(t \vee r)) \wedge \neg s=((s \vee t) \vee r) \wedge \neg s
$$

Hence, applying the cancellation property, the required result follows.
Example 5.2.5. Let (L, \leq) be a distributive complemented lattice. Then, by Definition 5.1.2, L has two binary operations \vee and \wedge and by Definition 5.1.15, the operation $\neg x$. It can be easily verified that (L, \vee, \wedge, \neg) is a indeed a Boolean algebra.

Now, let (B, \vee, \wedge, \neg) be a Boolean algebra. Then, for any two elements $a, b \in B$, we define $a \leq b$ if $a \wedge b=a$. The next result shows that \leq is a partial order in B. This partial order is generally called the induced partial order. Thus, we see that the Boolean algebra B, with the induced partial order, is a distributive complemented lattice.

Theorem 5.2.6. Let (B, \vee, \wedge, \neg) be a Boolean algebra. Define, $a \leq b$ if $a \wedge b=a$. Then, \leq is a partial order on B. Furthermore, $a \vee b=\operatorname{lub}\{a, b\}$ and $a \wedge b=\operatorname{glb}\{a, b\}$.

Proof. We first verify that (B, \leq) is indeed a partial order.
Reflexive: By idempotence, $s \leq s$ and hence \leq is reflexive.
Antisymmetry: Let $s \leq t$ and $t \leq s$. Then, we have $s=s \wedge t=t$.
Transitive: Let $s \leq t$ and $t \leq r$. Then, using associativity, $s \wedge r=(s \wedge t) \wedge r=s \wedge(t \wedge r)=s \wedge t=s$ and thus, $s \leq r$.
Now, we show that $a \vee b=\operatorname{lub}\{a, b\}$. Since B is a Boolean algebra, using absorption, we get $(a \vee b) \wedge a=a$ and hence $a \leq a \vee b$. Similarly, $b \leq a \vee b$. So, $a \vee b$ is an upper bound for $\{a, b\}$.
Now, let x be any upper bound for $\{a, b\}$. Then, by distributive property, $(a \vee b) \wedge x=$ $(a \wedge x) \vee(b \wedge x)=a \vee b$. So, $a \vee b \leq x$. Thus, $a \vee b$ is the lub of $\{a, b\}$. The rest of the proof is similar and hence is left for the reader.
Thus, we observe that there is one-to-one correspondence between the set of Boolean Algebras and the set of distributive complemented lattice.

Definition 5.2.7. [Atom] Let B be a Boolean algebra. If there exists a $b \in B, b \neq \mathbf{0}$ such that b is a minimal element in B, then b is called an atom.

Example 5.2.8. 1. In the powerset Boolean algebra, singleton sets are the only atoms.
2. Atoms of the 'divides 30 ' Boolean algebra are 2,3 and 5 .
3. The $\{F, T\}$ Boolean algebra has only one atom, namely T.

EXERCISE 5.2.9. 1. Determine the atoms of the free Boolean algebra with generators p_{1}, \ldots, p_{n} ?
2. Is it necessary that every Boolean algebra has at least one atom?

Definition 5.2.10. [Boolean homomorphism] Let B_{1} and B_{2} be two Boolean algebras. A function $f: B_{1} \rightarrow B_{2}$ is a Boolean homomorphism if it preserves $\mathbf{0}, \mathbf{1}, \vee, \wedge$, and \neg. That is,

$$
f\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}, \quad f\left(\mathbf{1}_{1}\right)=\mathbf{1}_{2}, \quad f(a \vee b)=f(a) \vee f(b), \quad f(a \wedge b)=f(a) \wedge f(b), \text { and } f(\neg a)=\neg f(a) .
$$

A Boolean isomorphism is a Boolean homomorphism which is a bijection.
Exercise 5.2.11. Let B_{1} and B_{2} be two Boolean algebras and let $f: B_{1} \rightarrow B_{2}$ be a function that satisfies the four conditions $f\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}, f\left(\mathbf{1}_{1}\right)=\mathbf{1}_{2}, \quad f(a \vee b)=f(a) \vee f(b)$ and $f(a \wedge b)=$ $f(a) \wedge f(b)$. Then, prove that f also satisfies the fifth condition, namely $f(\neg a)=\neg f(a)$.

Example 5.2.12. The function $f: P\left(J_{4}\right) \rightarrow P\left(J_{3}\right)$ defined as $f(S)=S \backslash\{4\}$ is a Boolean homomorphism. We check just two properties and the rest is left as an exercise.

$$
\begin{gathered}
f(A \vee B)=f(A \cup B)=(A \cup B) \backslash\{4\}=(A \backslash\{4\}) \cup(B \backslash\{4\})=f(A) \vee f(B) . \\
f\left(\mathbf{1}_{1}\right)=f\left(J_{4}\right)=J_{4} \backslash\{4\}=J_{3}=\mathbf{1}_{2} .
\end{gathered}
$$

Proposition 5.2.13. Let B be a Boolean algebra and p, q be two distinct atoms. Then, $p \wedge q=\mathbf{0}$.
Proof. Suppose that $p \wedge q \neq \mathbf{0}$. As $p \wedge q \leq p$ and p is an atom, we must have $p \wedge q=p$, i.e., $q \leq p$. As $p \neq q$ and q is an atom, it follows that p cannot be an atom.

Proposition 5.2.14. Let B be a Boolean algebra with three distinct atoms p, q and r. Then, $p \vee q \neq p \vee q \vee r$.

Proof. Let if possible $p \vee q=p \vee q \vee r$. Then, we have

$$
\begin{aligned}
r= & r \vee \mathbf{0}=r \vee[(p \vee q) \wedge \neg(p \vee q)]=[r \vee p \vee q] \wedge[r \vee \neg(p \vee q)]=[p \vee q] \wedge[r \vee \neg(p \vee q)] \\
& =[(p \vee q) \wedge r] \vee[(p \vee q) \wedge \neg(p \vee q)]=(p \vee q) \wedge r=(p \wedge r) \vee(q \wedge r)=\mathbf{0} \vee \mathbf{0}=\mathbf{0},
\end{aligned}
$$

a contradiction to r being an atom, i.e., r is nonzero.
Example 5.2.15. Let B be a Boolean algebra having distinct atoms $A=\{p, q, r\}$. Then, B has at least 2^{3} elements.
To show this, we define $f: \mathcal{P}(A) \rightarrow B$ by $f(\emptyset)=\mathbf{0}$ and for $S \subseteq A, f(S)=\bigvee_{x \in S} x$ and claim that f is a one-one function.
Suppose $f(S)=f(T)$. Then, $f(S)=f(S) \vee f(T)=f(S \cup T)$. In view of Proposition 5.2.14, we have $S=S \cup T$, i.e., $T \subseteq S$. Similarly, as $f(T)=f(T \cup S)$, we have $S \subseteq T$ and hence $S=T$. Thus, f is a one-one function. Therefore, $f(S)$ is distinct, for each subset of A and thus B has at least 2^{3} elements.

5.2. BOOLEAN ALGEBRAS

Theorem 5.2.16. Let B be a Boolean algebra having distinct atoms $A=\{p, q, r, s\}$. Let $b \in B$, $b \neq \mathbf{0}$. Suppose that $S=\{$ atoms $x: x \leq b\}=\{p, q, r\}$. Then, $b=p \vee q \vee r$.

Proof. It is clear that $p \vee q \vee r \leq b$. Suppose that $p \vee q \vee r<b$. Then,
$b=b \wedge[(p \vee q \vee r) \vee \neg(p \vee q \vee r)]=[b \wedge(p \vee q \vee r)] \vee[b \wedge \neg(p \vee q \vee r)]=(p \vee q \vee r) \vee[b \wedge \neg(p \vee q \vee r)]$.
Therefore, the above equality implies that $[b \wedge \neg(p \vee q \vee r)] \neq \mathbf{0}$. So, there is an atom, say x, such that $x \leq b \wedge \neg(p \vee q \vee r)$. Thus, we have $x \leq b$ and $x \leq \neg(p \vee q \vee r)$.
Notice that if $x \leq(p \vee q \vee r)$, then $x \leq \mathbf{0}$, which is not possible. So, $x \neq p, q, r$ is an atom in S, a contradiction.

Theorem 5.2.17. [Representation] Let B be a finite Boolean algebra. Then, there exists a set X such that B is isomorphic to $\mathcal{P}(X)$.

Proof. Put $X=\{$ atoms of $B\}$. Note that $X \neq \emptyset$. Define $f: B \rightarrow \mathcal{P}(X)$ by $f(b)=\{$ atoms $\leq b\}$. We show that f is the required Boolean isomorphism.
Injection: Let $b_{1} \neq b_{2}$. Then, either $b_{1} \not \leq b_{2}$ or $b_{2} \not \leq b_{1}$. Without loss of generality, let $b_{1} \not \leq b_{2}$. [Now imagine the power set Boolean algebra. Saying $b_{1} \nsubseteq b_{2}$ is the same as $b_{1} \nsubseteq b_{2}$. In that case, we have an element in b_{1} which is not in b_{2}. That is, $b_{1} \cap b_{2}^{c} \neq \emptyset$. That is, there is a singleton subset of $b_{1} \cap b_{2}^{c}$. This is exactly what we are aiming for, i.e., to prove that $b_{1} \wedge \neg b_{2} \neq 0$.] Note that $b_{1}=b_{1} \wedge\left(b_{2} \vee \neg b_{2}\right)=\left(b_{1} \wedge b_{2}\right) \vee\left(b_{1} \wedge \neg b_{2}\right)$. Also, the assumption $b_{1} \not \leq b_{2}$ implies $b_{1} \wedge b_{2} \neq b_{1}$ and hence $b_{1} \wedge \neg b_{2} \neq \mathbf{0}$. So, there exists an atom $x \leq\left(b_{1} \wedge \neg b_{2}\right)$ and hence $x=x \wedge b_{1} \wedge \neg b_{2}$. Therefore,

$$
x \wedge b_{1}=\left(x \wedge b_{1} \wedge \neg b_{2}\right) \wedge b_{1}=x \wedge b_{1} \wedge \neg b_{2}=x
$$

Thus, $x \leq b_{1}$. Similarly, $x \leq \neg b_{2}$. As $x \neq \mathbf{0}$, we cannot have $x \leq b_{2}$ (the condition $x \leq \neg b_{2}$ and $x \leq b_{2}$ implies $\left.x \leq b_{2} \wedge \neg b_{2}=\mathbf{0}\right)$. Thus, $f\left(b_{1}\right) \neq f\left(b_{2}\right)$.
 $A \subseteq f(b)$. Need to show: $A=f(b)$. So, let $y \in f(b)$, i.e., y is an atom in B and

$$
y=y \wedge b=y \wedge\left(x_{1} \vee \cdots \vee x_{k}\right)=\left(y \wedge x_{1}\right) \vee \cdots \vee\left(y \wedge x_{k}\right) .
$$

Since $y \neq \mathbf{0}$, by Proposition 5.2.13, it follows that $y \wedge x_{i_{0}} \neq \mathbf{0}$, for some $i_{0} \in\{1,2, \ldots, k\}$. As $x_{i_{0}}$ and y are atoms, we have $y=y \wedge x_{i}=x_{i}$ and hence $y \in A$. Thus, f is a surjection. Preserving 0, 1: Clearly $f(\mathbf{0})=\emptyset$ and $f(\mathbf{1})=X$.
Preserving \vee, \wedge : By definition,

$$
\begin{aligned}
x \in f\left(b_{1} \wedge b_{2}\right) & \Leftrightarrow x \leq b_{1} \wedge b_{2} \Leftrightarrow x \leq b_{1} \text { and } x \leq b_{2} \\
& \Leftrightarrow x \in f\left(b_{1}\right) \text { and } x \in f\left(b_{2}\right) \Leftrightarrow x \in f\left(b_{1}\right) \cap f\left(b_{2}\right) .
\end{aligned}
$$

Now, let $x \in f\left(b_{1} \vee b_{2}\right)$. Then, by definition, $x=x \wedge\left(b_{1} \vee b_{2}\right)=\left(x \wedge b_{1}\right) \vee\left(x \wedge b_{2}\right)$. So, there exists i such that $x \wedge b_{i} \neq \mathbf{0}$ (say, $\left.x \wedge b_{1}\right)$. As, x is an atom, $x \leq b_{1}$ and hence $x \in f\left(b_{1}\right) \subseteq f\left(b_{1}\right) \cup f\left(b_{2}\right)$. Conversely, let $x \in f\left(b_{1}\right) \cup f\left(b_{2}\right)$. Without loss of generality, let $x \in f\left(b_{1}\right)$. Thus, $x \leq b_{1}$ and hence $x \leq b_{1} \vee b_{2}$ which in turn implies that $x \in f\left(b_{1} \vee b_{2}\right)$.
As a direct corollary, we have the following result.

Corollary 5.2.18. Let B be a finite Boolean algebra having exactly k atoms. Then, B is isomorphic to $\mathcal{P}(\{1,2, \ldots, k\})$ and hence has exactly 2^{k} elements.

EXERCISE 5.2.19. 1. Determine the number of elements in a finite Boolean algebra.
2. Supply a Boolean homomorphism f from $P\left(J_{4}\right)$ to $P\left(J_{3}\right)$ such that the image of $P\left(J_{4}\right)$ has 4 elements.
3. Prove/Disprove: The number of Boolean homomorphisms from $P\left(J_{4}\right)$ to $P\left(J_{3}\right)$ is less than the number of lattice homomorphisms from $P\left(J_{4}\right)$ to $P\left(J_{3}\right)$.
4. Show that a lattice homomorphism on a Boolean algebra which preserves $\mathbf{0}$ and $\mathbf{1}$ is a Boolean homomorphism.
5. Consider the class of all functions $f: \mathbb{R} \rightarrow\{\pi, e\}$. Can we define some operations on this class to make it a Boolean algebra?
6. Show that a finite Boolean algebra must have at least one atom. Is 'finite' necessary?
7. A positive integer is called squarefree if it is not divisible by the square of a prime. Let $B_{n}=\{k \in \mathbb{N}: k \mid n\}$. For $a, b \in B_{n}$ take the operations $a \vee b=\operatorname{lcm}(a, b), a \wedge b=\operatorname{gcd}(a, b)$ and $\neg a=n / a$. Show that B_{n} is a Boolean algebra if and only if $n>1$ is squarefree.
8. Show that the set of subsets of \mathbb{N} which are either finite or have a finite complement is a countable infinite Boolean algebra. Find the atoms. Is it isomorphic to the Boolean algebra of all finite length formulae involving variables p_{1}, p_{2}, \cdots ?
9. Let B be a Boolean algebra and $x_{i} \in B, i=1,2, \ldots$ We know that, for each $n \in \mathbb{N}$, the expression ' $\bigvee_{i=1}^{n} x_{i}$ ' is meaningful in each Boolean algebra due to associativity. Is ' $\bigvee_{i=1}^{\infty} x_{i}$, necessarily a meaningful expression?
10. Prove/Disprove: Let $f: B_{1} \rightarrow B_{2}$ be a Boolean homomorphism and $a \in B_{1}$ be an atom. Then, $f(a)$ is an atom of B_{2}.
11. Fill in the blank: The number of Boolean homomorphisms from $P\left(J_{4}\right)$ to $P\left(J_{3}\right)$ is \qquad -.
12. Fill in the blank: The number of Boolean homomorphisms from $P\left(J_{4}\right)$ onto $P\left(J_{3}\right)$ is \qquad .
13. How many atoms does "divides 30030 Boolean algebra" has? How many elements does it have?
14. If B_{1} and B_{2} are Boolean algebras of size $k(k>100)$, then they must be isomorphic and there must be more than k isomorphisms between them.
15. Give examples of two countably infinite non-isomorphic Boolean algebras.
16. Give examples of two uncountably infinite non-isomorphic Boolean algebras.

Chapter 6

Counting

Discussion 6.0.1. In the previous chapters, we had learnt that two sets, say A and B, have the same cardinality if there exists a one-one and onto function $f: A \rightarrow B$. We also learnt the following two rules of counting which play a basic role in the development of this subject.

1. [Multiplication rule] If a task has n compulsory parts, say $A_{1}, A_{2}, \ldots, A_{n}$ and the i th part can be completed in $m_{i}=\left|A_{i}\right|$ ways, $i=1, \ldots, n$, then the task can be completed in $m_{1} m_{2} \cdots m_{n}$ ways. In mathematical terms,

$$
\left|A_{1} \times A_{2} \times \cdots \times A_{n}\right|=\left|A_{1}\right| \cdot\left|A_{2}\right| \cdots \cdots\left|A_{n}\right| .
$$

2. [Addition rule] If a task consists of n alternative parts, say $A_{1}, A_{2}, \ldots, A_{n}$, and the i th part can be done in $\left|A_{i}\right|=m_{i}$ ways, $i=1, \ldots, n$, then the task can be completed in $m_{1}+m_{2}+\cdots+m_{n}$ ways. In mathematical terms,

$$
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\left|A_{1}\right|+\left|A_{2}\right|+\cdots+\left|A_{n}\right| .
$$

Definition 6.0.2. We use the notation $n!=1 \cdot 2 \cdots \cdots n$. By convention, we take $0!=1$.

6.1 Permutations and combinations

Example 6.1.1. How many three digit natural numbers can be formed using digits $0,1, \cdots, 9$? Identify the number of parts in the task and the type of the parts (compulsory or alternative). Which rule applies here?
Ans: The task has three compulsory parts. Part 1: choose a digit for the leftmost place. Part 2: choose a digit for the middle place. Part 3: choose a digit for the rightmost place.

Multiplication rule applies. Ans: 900.
Example 6.1.2. How many three digit natural numbers with distinct digits can be formed using digits $1, \cdots, 9$ such that each digit is odd or each digit is even? Identify the number of parts in the task and the type of the parts (compulsory or alternative). Which rule applies here?

Ans: The task has two alternative parts. Part 1: form a three digit number using the odd digits. Part 2: form a three digit number using the even digits. Observe that Part 1 is a task having three compulsory subparts. In view of 6.1 .1 , we see that Part 1 can be done in 60 ways. Part 2 is a task having three compulsory subparts. In view of 6.1.1, we see that Part 2 can be done in 24 ways. Since our task has alternative parts, addition rule applies. Ans: 84.

Definition 6.1.3. [r-sequence] An r-sequence of elements of X is a sequence of length r with elements from X. This may be viewed as a word of length r with alphabets from X or as a function $f:[r] \rightarrow X$. We write 'an r-sequence of S ' to mean 'an r-sequence of elements of S '.

Theorem 6.1.4. [Number of r-sequences] The number of r-sequences of $[n]$ is n^{r}.
Proof. Here the task has r compulsory parts. Choose the first element of the sequence, the second element and so on.

Exercise 6.1.5. 1. In how many ways can r distinguishable/distinct balls be put into n distinguishable/distinct boxes?
2. How many distinct ways are there to make a 5 letter word using the ENGLISH alphabet?
3. How many distinct ways are there to make a 5 letter word using the ENGLISH alphabet
(a) with ONLY consonants?
(b) with ONLY vowels?
(c) with a consonant as the first letter and a vowel as the second letter?
(d) if the vowels appear only at odd positions?
4. Determine the total number of possible outcomes if
(a) two coins are tossed?
(b) a coin and a die are tossed?
(c) two dice are tossed?
(d) three dice are tossed?
(e) five coins are tossed?

Definition 6.1.6. [r-permutation, n-set] By an \boldsymbol{n}-set, we mean a set containing n elements. An r-permutation of an n-set S is an arrangement of r distinct elements of S in a row. An r-permutation may be viewed as a one-one mapping $f:[r] \rightarrow S$. An n-permutation of an n-set is simply called a permutation.

Example 6.1.7. How many one-one maps $f:[4] \rightarrow \mathcal{A}=\{A, B, \ldots, Z\}$ are there?
Ans: The task has 4 compulsory parts: select $f(1)$, select $f(2)$, select $f(3)$ and select $f(4)$. Note that $f(2)$ cannot be $f(1), f(3)$ cannot be $f(1)$ or $f(2)$ and so on. Now apply the multiplication rule. Ans: 26.25.24.23 $=\frac{26!}{22!}$.

Theorem 6.1.8. [Number of r-permutations] The number of r-permutation of an n-set S is $P(n, r)=\frac{n!}{(n-r)!}$.

Proof. Let us view an r-permutation as a one-one map from $f:[r] \rightarrow S$. Here the task has r compulsory tasks: select $f(1)$, select $f(2), \ldots$, select $f(r)$ with the condition, for $2 \leq$ $k \leq r, f(k) \notin\{f(1), f(2), \ldots, f(k-1)\}$. Multiplication rule applies. Hence, the number of r-permutations equals $n(n-1) \cdots(n-r+1)=\frac{n!}{(n-r)!}$.

Definition 6.1.9. By $\boldsymbol{P}(\boldsymbol{n}, \boldsymbol{r})$, we denote the number of r-permutations of $[n]$. By convention, $P(n, 0)=1$. Some books use the notation $n_{(r)}$ and call it the falling factorial of n. Thus, if $r>n$ then $P(n, r)=n_{(r)}=0$ and if $n=r$ then $P(n, r)=n_{(r)}=n!$.

EXERCISE 6.1.10. 1. How many distinct ways are there to make 5 letter words using the ENGLISH alphabet if the letters must be different?
2. How many distinct ways are there to arrange the 5 letters of the word ROY AL?
3. How many distinct ways are there to arrange the 5 couples on 10 chairs so that the couples sit together?
4. How many distinct ways can 8 persons, including Ram and Shyam, sit in a row, with Ram and Shyam sitting next to each other?
5. Determine the number of ways to place 4 couples in a row if each couple seats together.

Proposition 6.1.11. [principle of disjoint pre-images of equal size] Let A, B be finite sets and $f: A \rightarrow B$ be a function such that for each pair $b_{1}, b_{2} \in B$ we have $\left|f^{-1}\left(b_{1}\right)\right|=k=\left|f^{-1}\left(b_{2}\right)\right|$ (recall that $f^{-1}\left(b_{1}\right) \cap f^{-1}\left(b_{2}\right)=\emptyset$). Then, $|A|=k|B|$.

Discussion 6.1.12. Consider the word $A A B A B$. Give subscripts to the three A s and the two $B \mathrm{~s}$ and complete the following list. Notice that each of them will give us $A A B A B$ if we erase the subscripts.

$A_{1} A_{2} B_{1} A_{3} B_{2}$	$A_{1} A_{2} B_{1} B_{2} A_{3}$	$A_{1} A_{2} A_{3} B_{1} B_{2}$	$A_{1} A_{2} A_{3} B_{2} B_{1}$	$A_{1} A_{2} B_{2} B_{1} A_{3}$
$A_{1} A_{2} B_{2} A_{3} B_{1}$	\cdots	\cdots	\cdots	\cdots
\cdots	\cdots	\cdots	\cdots	\cdots
\cdots	\cdots	\cdots	\cdots	\cdots
\cdots	\cdots	\cdots	$B_{2} A_{3} B_{1} A_{1} A_{2}$	$B_{2} A_{3} B_{1} A_{2} A_{1}$

Example 6.1.13. How many words of size 5 are there which use three A 's and two B 's?
Ans: Put $A=\left\{\right.$ arrangements of $\left.A_{1}, A_{2}, A_{3}, B_{1}, B_{2}\right\}$ and $B=\{$ words of size 5 which use three A 's and two B 's $\}$. For each arrangement $a \in A$, define $f(a)$ to be the word in B obtained by erasing the subscripts. Then, the function $f: A \rightarrow B$ satisfies:
'for each $b, c \in B, b \neq c$, we have $\left|f^{-1}(b)\right|=\left|f^{-1}(c)\right|=3!2$! and $f^{-1}(b) \cap f^{-1}(c)=\emptyset$ '.
Thus, by Proposition 6.1.11, $|B|=\frac{|A|}{3!2!}=\frac{5!}{3!2!}$.

Remark 6.1.14. Let us fix $n, k \in \mathbb{N}$ with $0 \leq k \leq n$ and ask the question 'how many words of size n are there which uses k many A 's and $(n-k)$ many B 's'?
Ans: Put $A=\left\{\right.$ arrangements of $\left.A_{1} A_{2} \ldots A_{k} B_{1} B_{2} \ldots B_{n-k}\right\}$ and $B=\{$ words of size n which uses k many A 's and $(n-k)$ many B 's\} and proceed as above to get

$$
|B|=\frac{|A|}{k!(n-k)!}=\frac{n!}{k!(n-k)!}
$$

as the required answer. Observe that the above argument implies $\frac{n!}{k!(n-k)!} \in \mathbb{Z}$. We denote this number by $P(n ; k)$. Note that $P(n ; k)=P(n ; n-k)$, Also, as per convention, $P(n ; k)=0$, whenever $k<0$ or $n<k$.

The above idea is further generalized below.
Definition 6.1.15. A multiset is a collection of objects where an object can appear more than once. So, a set is a multiset. Note that $\{a, a, b, c, d\}$ and $\{a, b, a, c, d\}$ are the same 5 -multisets.

Theorem 6.1.16. [Arrangements] Let us fix $n, k \in \mathbb{N}$ with $1 \leq k \leq n$ and let S be a multiset containing $n_{i} \in \mathbb{N}$ objects of i-th type, for $i=1, \ldots, k$ with $n=\sum_{i=1}^{k} n_{i}$. Then, there are $\frac{\left(n_{1}+\cdots+n_{k}\right)!}{n_{1}!n_{2}!\cdots n_{k}!}=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}$ arrangements of the objects in S.
Proof. Assume that S consists of n_{i} copies of $A_{i}, i=1, \ldots, k$. Put
$A=\left\{A_{11}, \ldots, A_{1 n_{1}}, A_{21}, \ldots, A_{2 n_{2}}\right.$ \qquad \} and
$B=\{$ words of size \qquad made using elements of \qquad $\}$. For each arrangement $a \in A$, define $f(a)$ to be the word in B obtained by erasing the right subscripts of the objects of a. Then, the function $f: A \rightarrow B$ satisfies:
'for each $b, c \in B, b \neq c$, we have $\left|f^{-1}(b)\right|=\left|f^{-1}(c)\right|=\ldots$ and $f^{-1}(b) \cap f^{-1}(c)=\emptyset$ '.
Thus, by Proposition 6.1.11, $|B|=\frac{|A|}{n_{1}!\cdots n_{k}!}=\frac{\left(n_{1}+\cdots+n_{k}\right)!}{n_{1}!\cdots n_{k}!}=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}$.
Theorem 6.1.17. [Allocation I: distinct locations; identical objects (n_{i} of type i); at most one per place] Fix a positive integer k and for $1 \leq i \leq k$, let G_{i} 's be boxes containing $n_{i} \in \mathbb{N}$ identical objects. If the objects in distinct boxes are non-identical and $n \geq \sum i=1^{k} n_{i}$ then, the number of allocations of the objects in n distinct locations l_{1}, \ldots, l_{n}, each location receiving at most one object, is $\frac{n!}{n_{1}!\cdots n_{k}!\left(n-\sum n_{i}\right)!}$.
Proof. Consider a new group G_{k+1} with $n_{k+1}=n-\sum_{1}^{k} n_{i}$ objects of a new type. Notice that an allocation of objects from G_{1}, \ldots, G_{k} to n distinct places, where each location receives at most one object, gives a unique arrangement of elements of $G_{1}, \ldots, G_{k+1} .{ }^{1}$ Thus, the number

[^5]of allocations of objects from G_{1}, \ldots, G_{k} to n distinct places, where each location receives at most one object, is the same as the number of arrangements of elements of G_{1}, \ldots, G_{k+1}. By Theorem 6.1.16, this number is $\frac{n!}{n_{1}!\cdots n_{k}!\left(n-\sum n_{i}\right)!}$.
Definition 6.1.18. Let $n, n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{N}$. Then, the number $\frac{n!}{n_{1}!\cdots n_{k}!\left(n-\sum n_{i}\right)!}$ is denoted by $\boldsymbol{P}\left(\boldsymbol{n} ; \boldsymbol{n}_{\mathbf{1}}, \ldots, \boldsymbol{n}_{\boldsymbol{k}}\right)$. Thus, $P(6 ; 1,1,1)=P(6,3)$. As a convention, $P\left(n ; n_{1}, \ldots, n_{k}\right)=0$ whenever either $n_{i}<0$; for some $i, 1 \leq i \leq k$, or $\sum_{i=1}^{k} n_{i}>n$. Many texts use $C\left(n ; n_{1}, \cdots, n_{k}\right)$ to mean $P\left(n ; n_{1}, \cdots, n_{k}\right)$. We shall interchangeably use them.

Definition 6.1.19. [r-combination] An r-combination of an n-set S is an r-subset of S. The number of r-subsets of an n-set is denoted by $\boldsymbol{C}(\boldsymbol{n}, \boldsymbol{r})$. Thus, for any natural number n, $C(n, 0)=C(n, n)=1$.

Theorem 6.1.20. [Combination] $C(n, r)=P(n ; r)=\frac{n!}{r!(n-r)!}$.
Proof. By 6.1.17, the number of allocations of r identical objects in n distinct places $\left(p_{1}, \ldots, p_{n}\right)$ with each place receiving at most 1 is $P(n ; r)$. Note that each such allocation A uniquely corresponds to a r-subset of $[n]$, namely to $\left\{i \mid p_{i}\right.$ receives an object by $\left.A\right\}$. Thus, $C(n, r)=$ $P(n ; r)=\frac{n!}{r!(n-r)!}$.

Example 6.1.21. In how many ways can you allocate 3 identical passes to 10 students so that each student receives at most one? Ans: $C(10,3)$

Theorem 6.1.22. [Pascal] $C(n, r)+C(n, r+1)=C(n+1, r+1)$.
Proof. By Theorem 6.1.20, $C(n, r)=\frac{n!}{r!(n-r)!}$. Now verify the above identity to get the result.

Experiment

Complete the following list by filling the left list with all 3 -subsets of [5] and the right list with 3-subsets of [4] as well as with 2-subsets of [4] as shown below.

$$
C(5,3)\left\{\begin{array}{l||l}
\{1,2,3\} & \begin{array}{l}
\{1,2,3\} \\
\{2,3,4\} \\
\{1,2,5\}
\end{array} \\
& \begin{array}{l}
\{2,3,4\} \\
\{1,2\} \\
\\
\{3,4,5\}
\end{array} \\
\\
\{3,4\}
\end{array}\right\} C(4,3)
$$

Theorem 6.1.23. [Alternate proof of Pascal's theorem 6.1.22] Here we supply a combinatorial proof, i.e., 'by associating the numbers with objects'. Let $S=[n+1]$ and A be an $(r+1)$-subset of S. Then, there are $C(n+1, r+1)$ such sets with either $n+1 \in A$ or $n+1 \notin A$.
Note that $n+1 \in A$ if and only if $A \backslash\{n+1\}$ is an r-subset of $[n]$. So, the number of $(r+1)$-subsets of $[n+1]$ which contain the element $n+1$ is, by definition, $C(n, r)$.

Also, $n+1 \notin A$ if and only if A is an $(r+1)$-subset of $[n]$. So, a set A which does not contain $n+1$ can be formed in $C(n, r+1)$ ways. Hence, an $(r+1)$-subset of S can be formed, by definition, in $C(n, r)+C(n, r+1)$ ways. Thus, the required result follows.

Experiment

Here we consider subsets of [4]. Complete the following list by using 0's, 1 's, x 's and y 's, where x and y are commuting $(x y=y x)$ symbols.

\emptyset	0000	yyyy $=y^{4}$
$\{1\}$	1000	$x y y y=x y^{3}$
$\{2\}$	0100	yxyy $=x y^{3}$
$\{3\}$	0010	yyxy $=x y^{3}$
$\{4\}$	0001	yyyx $=x y^{3}$
$\{1,2\}$	1100	$x x y y=x^{2} y^{2}$
$\{1,2,3,4\}$	1111	$x x x x=x^{4}$

Remark 6.1.24. [Another alternate proof of Pascal's theorem 6.1.22] Here we supply another combinatorial proof. An $(r+1)$ subset of $[n+1]$ may be viewed as a string (word) of size $n+1$ made of $(n-r)$ many 0 's and $(r+1)$ many 1 's. The number of such strings which end with a 1 is $C(n, r)$. The number of such strings which end with a 0 is $C(n, r+1)$. So, the required conclusion follows.

Practice 6.1.25. Give a combinatorial proof of $C(n, r)=C(n, n-r)$, whenever $n, r \in \mathbb{N}$ with $0 \leq r \leq n$.

Theorem 6.1.26. [Allocation II: distinct locations; distinct objects; n_{i} at place i] The number of ways of allocating objects o_{1}, \ldots, o_{n} into pockets p_{1}, \ldots, p_{k} so that pocket p_{i} contains n_{i} objects, is $P\left(n ; n_{1}, \ldots, n_{k}\right)$.

Proof. Task has k compulsory parts: select n_{1} for pocket p_{1} and so on. So, the answer is $C\left(n, n_{1}\right) C\left(n-n_{1}, n_{2}\right) \cdots C\left(n-n_{1}-\cdots-n_{k-1}, n_{k}\right)=P\left(n ; n_{1}, \ldots, n_{k}\right)$.
Alternate. Take an allocation of o_{1}, \ldots, o_{n} into pockets p_{1}, \ldots, p_{k} so that the pocket p_{i} gets n_{i} objects. This is an allocation of n_{1} copies of p_{1}, \cdots, n_{k} copies of p_{k} into locations o_{1}, \ldots, o_{n} where each location gets exactly one. Hence, the answer is $P\left(n ; n_{1}, \ldots, n_{k}\right)$.

Exercise 6.1.27. 1. In a class there are 17 girls and 20 boys. A committee of 5 students is to be formed to represent the class.
(a) Determine the number of ways of forming the committee consisting of 5 students.
(b) Suppose the committee also needs to choose two different people from among themselves, who will act as "spokesperson" and "treasurer". In this case, determine the number of ways of forming a committee consisting of 5 students. Note that two committees are different if
i. either the members are different, or
ii. even if the members are the same, they have different students as spokesperson and/or treasurer.
(c) Due to certain restrictions, it was felt that the committee should have at least 3 girls. In this case, determine the number of ways of forming the committee consisting of 5 students (no one is to be designated as spokesperson and/or treasurer).
2. Combinatorially prove the following identities:
(a) $k C(n, k)=n C(n-1, k-1)$.
(b) Newton's Identity: $C(n, r) C(r, k)=C(n, k) C(n-k, r-k)$.
(c) $C(n, r)=C(r, r) C(n-r, 0)+C(r, r-1) C(n-r, 1)+\cdots+C(r, 0) C(n-r, r)$.
(d) $C(n, 0)^{2}+C(n, 1)^{2}+\cdots+C(n, n)^{2}=C(2 n, n)$.
3. Determine the number of ways of selecting a committee of m people from a group consisting of n_{1} women and n_{2} men, with $n_{1}+n_{2} \geq m$.
4. Determine the number of ways of arranging the letters of the word
(a) ABRACADABARAARCADA.
(b) KAGARTHALAMNAGARTH ALAM.
5. How many anagrams of MISSISSIPPI are there so that no two S are adjacent?
6. How many rectangles are there in an $n \times n$ square? How many squares are there?
7. Show that a product of n consecutive natural numbers is always divisible by n !.
8. Show that $(m!)^{n}$ divides $(m n)$!.
9. If n points are placed on the circumference of a circle and all the lines connecting them are joined, what is the largest number of points of intersection of these lines inside the circle that can be obtained?
10. Prove that $C(p n, p n-n)$ is a multiple of p in two ways. Hint: Newton's identity.
11. How many ways are there to form the word MATHEMATICIAN starting from any side and moving only in horizontal or vertical directions?

12. (a) In how many ways can one arrange n different books in m different boxes kept in a row, if books inside the boxes are also kept in a row?
(b) What if no box can be empty?
13. Prove by induction that $2^{n} \mid(n+1) \cdots(2 n)$.

6.1.1 Multinomial theorem

Definition 6.1.28. Let x, y and z be commuting symbols. Then, by an algebraic expansion ${ }^{1}$ of $(x+y+z)^{n}$ we mean an expansion where each term is of the form $\alpha x^{i} y^{j} z^{k}$ so that two terms differ in the degree of at least one of x, y, or z. By a word expansion ${ }^{2}$ of $(x+y+z)^{n}$ we mean an expansion where each term is a word of length n using symbols x, y, z. Expansions for $\left(x_{1}+\cdots+x_{r}\right)^{n}$, whenever x_{i} 's are commuting symbols, may be defined in a similar way.
Example 6.1.29. 1. $x^{3}+3 x y^{2}+y^{3}+3 y x^{2}$ is an algebraic expansion of $(x+y)^{3}$, where as $x x x+x x y+x y x+x y y+y x x+y x y+y y x+y y y$ is a word expansion of $(x+y)^{3}$.
2. Take the word expansion of $(X+Y+Z)^{9}$. A term with exactly two X 's and exactly three Y 's is nothing but an arrangement of two X^{\prime} 's, three Y^{\prime} 's and four Z 's. So, the coefficient of $X^{2} Y^{3} Z^{4}$ in the algebraic expansion of $(X+Y+Z)^{9}$ is $P(9 ; 2,3,4)$.
3. Consider $(x+y+z)^{n}=\underbrace{(x+y+z) \cdot(x+y+z) \cdots \cdots(x+y+z)}_{n \text { times }}$. Then, in this expression, we need to choose, say
(a) i places from the n possible places for $x(i \geq 0)$,
(b) j places from the remaining $n-i$ places for $y(j \geq 0)$, and
(c) the $n-i-j$ left out places for $z($ with $n-i-j \geq 0)$.

Thus, we get

$$
(x+y+z)^{n}=\sum_{i, j \geq 0, i+j \leq n} C(n, i) C(n-i, j) x^{i} y^{j} z^{n-i-j}=\sum_{i, j \geq 0, i+j \leq n} P(n ; i, j) x^{i} y^{j} z^{n-i-j}
$$

Theorem 6.1.30. [Multinomial Theorem] Fix a positive integer n and let $x_{1}, x_{2}, \ldots, x_{n}$ be a collection of commuting symbols. Then, for $n=n_{1}+\cdots+n_{k}$, the coefficient of $x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{k}^{n_{k}}$ in the algebraic expansion of $\left(x_{1}+\cdots+x_{k}\right)^{n}$ is $P\left(n ; n_{1}, \cdots, n_{k}\right)$. So

$$
\left(x_{1}+\cdots+x_{k}\right)^{n}=\sum_{\substack{n_{1}, \ldots, n_{k} \geq 0 \\ n_{1}+\cdots+n_{k}=n}} P\left(n ; n_{1}, \cdots, n_{k}\right) x_{1}^{n_{1}} \cdots x_{k}^{n_{k}}
$$

Proof. The proof is left as an exercise for the reader.
As a special case, we have the famous binomial theorem.
Corollary 6.1.31. [Binomial Theorem] $(x+y)^{n}=\sum_{k=0}^{n} C(n, k) x^{n-k} y^{k}$. !!

[^6]Example 6.1.32. Form words of size 5 using letters from 'MATHEMATICIAN' (including multiplicity, that is, you may use M at most twice). How many are there?
Ans: $\sum_{\substack{k_{1}+\ldots+k_{8}=5 \\ k_{1} \leq 2, k_{2} \leq 3, k_{3} \leq 2, k_{4} \leq 1, k_{5} \leq 1, k_{6} \leq 2, k_{7} \leq 1, k_{8} \leq 1}} C\left(5 ; k_{1}, \cdots, k_{8}\right)$.
Exercise 6.1.33. 1. Show that $\mid \mathcal{P}([n])=2^{n}$ in the following ways.
(a) By using Binomial Theorem.
(b) By using 'select a subset is a task with n compulsory parts'.
(c) By associating a subset with a 0-1 string of length n and evaluating their values in base-2.
(d) Arguing in the line of 'a subset of $[n+1]$ either contains $n+1$ or not' and using induction.
2. Let S be a set of size n. Then, prove in two different ways that the number of subsets of S of odd size is the same as the number of subsets of S of even size, or equivalently $\sum_{k \geq 0} C(n, 2 k)=\sum_{k \geq 0} C(n, 2 k+1)=2^{n-1}$.
3. Prove the following identities on Binomial coefficients.
(a) $\sum_{k=\ell}^{n} C(k, \ell) C(n, k)=C(n, \ell) 2^{n-\ell}$.
(b) $C(m+n, \ell)=\sum_{k=0}^{\ell} C(m, k) C(n, \ell-k)$.
(c) $C(n+r+1, r)=\sum_{\ell=0}^{r} C(n+\ell, \ell)$.
(d) $C(n+1, r+1)=\sum_{\ell=r}^{n} C(\ell, r)$.
(e) $C(n, \ell)=\sum_{k=0}^{n} C(t, k) C(n-t, \ell-k)$, for any $t, 0 \leq t \leq n$.
4. Evaluate $\sum_{k=0}^{n}(2 k+1) C(n, 2 k+1)$ and $\sum_{k=0}^{n}(5 k+3) C(n, 2 k+1)$, whenever $n \geq 3$.
5. [Generalized Pascal] Assume that $k_{1}+\cdots+k_{m}=n$. Show that

$$
C\left(n ; k_{1}, \ldots, k_{m}\right)=C\left(n-1 ; k_{1}-1, \ldots, k_{m}\right)+\cdots+C\left(n-1 ; k_{1}, \ldots, k_{m}-1\right) .
$$

6. What is $\sum_{k_{1}+\ldots+k_{m}=n} C\left(n ; k_{1}, \ldots, k_{m}\right)$?
7. Put $l=\left\lfloor\frac{m}{2}\right\rfloor$. What is $\sum_{k_{1}+\ldots+k_{m}=n}(-1)^{k_{2}+k_{4}+\cdots+k_{2 l}} C\left(n ; k_{1}, \ldots, k_{m}\right)$?

6.2 Circular permutations

Definition 6.2.1. [Circular permutation/arrangement] A circular permutation is an arrangement of n distinct objects on a circle. Two circular arrangements are the same if each element has the same 'clockwise adjacent' element. When $|S|=n$, we write 'a circular arrangement of S ' to mean 'a circular arrangement of elements of S '. By $\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}\right]$ we shall denote a circular arrangement keeping the anticlockwise direction in picture.

Example 6.2.2. Exactly two pictures in Figure 6.1 represent the same circular permutation.

$\left[A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{1}\right]$

Figure 6.1: Circular permutations

Example 6.2.3. Determine the number of circular permutations of $X=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$?
Ans: 4!. Proof. Let $B=\{$ circular permutations of $X\}$ and $A=\{$ permutations of $X\}$. Now, define $f: A \rightarrow B$ as $f(a)=b$ if a is obtained by breaking the cycle b at some gap and then following in the anticlockwise direction. For example, if we break the leftmost circular permutation in Figure 6.1 at the gap between A and B, we get $\left[A_{2}, A_{3}, A_{4}, A_{5}, A_{1}\right]$. Notice that $\left|f^{-1}(b)\right|=5$, for each $b \in B$. Further if $b, c \in B$, then $f^{-1}(b) \cap f^{-1}(c)=\emptyset\left(\right.$ why $\left.?^{1}\right)$. Thus, by the principle of disjoint pre-images of equal size, the number of circular permutations is $5!/ 5$.

Theorem 6.2.4. [circular permutations] The number of circular permutations of $[n]$ is $(n-1)$!.
Proof. A proof may be obtained on the line of the previous example. Here we give an alternate proof. Put $A=\{$ circular permutations of [5]\}. Put $B=\{$ permutations of [4]\}. Define f : $A \rightarrow B$ as $f\left(\left[5, x_{1}, x_{2}, x_{3}, x_{4}, 5\right]\right)=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. Define $g: B \rightarrow A$ as $g\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right]\right)=$ $\left[5, x_{1}, x_{2}, x_{3}, x_{4}, 5\right]$. Then, $g \circ f(a)=a$, for each $a \in A$ and $f \circ g(b)=b$, for each $b \in B$. Hence, by the bijection principle (see Theorem 2.3.8) f is a bijection.

Example 6.2.5. Find the number of circular arrangements of $\{A, B, B, C, C, D, D, E, E\}$.
Ans: There is only one A. Cutting A out from a circular arrangement we get a unique arrangement of $\{B, B, C, C, D, D, E, E\}$. So, the required answer is $\frac{8!}{2!^{4}}$.

Definition 6.2.6. [Rotation, Orbit size]

1. Given an arrangement $\left[X_{1}, \ldots, X_{n}\right]$, by a rotation $R_{1}\left(\left[X_{1}, \ldots, X_{n}\right]\right)$, in short $R_{1}\left(X_{1}, \ldots, X_{n}\right)$, we mean $\left[X_{2}, \ldots, X_{n}, X_{1}\right]$ and by $R_{2}\left(X_{1}, \ldots, X_{n}\right)$ we mean $\left[X_{3}, \ldots, X_{n}, X_{1}, X_{2}\right]$. On similar lines, we define $R_{i}, i \in \mathbb{N}$ and put $R_{0}\left(X_{1}, \ldots, X_{n}\right)=\left[X_{1}, \ldots, X_{n}\right]$. Thus, for each $k \in \mathbb{N}$,

$$
R_{0}\left(X_{1}, \ldots, X_{n}\right)=R_{k n}\left(X_{1}, \ldots, X_{n}\right)=\left[X_{1}, \ldots, X_{n}\right] .
$$

2. The orbit size of an arrangement $\left[X_{1}, \ldots, X_{n}\right]$ is the smallest positive integer i which satisfies $R_{i}\left(X_{1}, \ldots, X_{n}\right)=\left[X_{1}, \ldots, X_{n}\right]$. In that case, we call

$$
\left\{R_{0}\left(X_{1}, \ldots, X_{n}\right), R_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, R_{i-1}\left(X_{1}, \ldots, X_{n}\right)\right\}
$$

the orbit of $\left[X_{1}, \ldots, X_{n}\right]$.

[^7]Example 6.2.7. 1. We have $R_{1}(A B C A B C A B C)=[B C A B C A B C A], R_{2}(A B C A B C A B C)=$ $[C A B C A B C A B]$ and $R_{3}(A B C A B C A B C)=[A B C A B C A B C]$. Thus, orbit size of $A B C A B C A B C$ is 3 .
2. An arrangement of $S=\{A, A, B, B, C, C\}$ with orbit size 6 is $[A A B C B C]$. An arrangement of S with orbit size 3 is $[A C B A C B]$.
3. There is no arrangement of $\{A, A, B, B, C, C\}$ with orbit size 2 . In fact, if $\left[X_{1} X_{2} \cdots X_{6}\right.$] is an arrangement with orbit size 2 then, $\left[X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}\right]=\left[X_{3} X_{4} X_{5} X_{6} X_{1} X_{2}\right]$. Thus, $X_{1}=X_{3}=X_{5}$ which is not possible.
4. There is no arrangement of $\{A, A, B, B, C, C\}$ with orbit size 1 or 2 or 4 or 5 .
5. There are 3! arrangements of $\{A, A, B, B, C, C\}$ with orbit size 3 .
6. Take an arrangement of $\{A, A, B, B, C, C\}$ with orbit size 3 . Make a circular arrangement by joining the ends. How many distinct arrangements can we generate by breaking the circular arrangement at gaps?

Ans: 3. They are the elements of the same orbit.
7. Take an arrangement of $\{A, A, B, B, C, C\}$ with orbit size 6 . Make a circular arrangement by joining the ends. How many distinct arrangements can we generate by breaking the circular arrangement at gaps?

Ans: 6. They are the elements of the same orbit.
8. Take an arrangement of n elements with orbit size k. Make a circular arrangement by joining the ends. How many distinct arrangements can we generate by breaking the circular arrangement at gaps?

Ans: k. They are the elements of the same orbit.
9. If we take the set of all arrangements of a finite multiset and group them into orbits (notice that each orbit gives us exactly one circular arrangement), then the number of orbits is the number of circular arrangements.

Example 6.2.8. Find the number of circular arrangements of $S=\{A, A, B, B, C, C, D, D, E, E\}$.
Ans: There are two types of arrangements of S : one of orbit size 10 and the other of orbit size 5 . The number of arrangements of S with orbit size 5 is 5 !. So, they can generate 4 ! distinct circular arrangements. The number of arrangements of S with orbit size 10 is $\frac{10!}{2!2!2!2!2!}-5!$. Hence, they can generate $\frac{10!}{2!2!2!2!2!10}-\frac{5!}{10}$ distinct circular arrangements. Thus, the total number of circular arrangements is $4!+\frac{10!}{2!2!2!2!2!10}-\frac{5!}{10}$.

Example 6.2.9. Suppose, we are given an arrangement $\left[X_{1}, \ldots, X_{10}\right.$] of five A 's and five B 's. Can it have an orbit size 3?
Ans: No. To see this assume that it's orbit size is 3. Then,

$$
\left[X_{1}, \ldots, X_{10}\right]=R_{3}\left(X_{1}, \ldots, X_{10}\right)=R_{6}\left(X_{1}, \ldots, X_{10}\right)=R_{9}\left(X_{1}, \ldots, X_{10}\right)=R_{2}\left(X_{1}, \ldots, X_{10}\right) .
$$

Since 3 was the least positive integer with $R_{3}\left(X_{1}, \ldots, X_{10}\right)=\left[X_{1}, \ldots, X_{10}\right]$, we arrive at a contradiction. Hence, the orbit size cannot be 3 .

Proposition 6.2.10. The orbit size of an arrangement of an n-multiset is a divisor of n.
Proof. Suppose, the orbit size of $\left[X_{1}, \ldots, X_{n}\right]$ is k and $n=k p+r$, for some $r, 0<r<k$. Then,

$$
R_{k}\left(X_{1}, \ldots, X_{n}\right)=R_{2 k}\left(X_{1}, \ldots, X_{n}\right)=\cdots=R_{k p}\left(X_{1}, \ldots, X_{n}\right)=R_{k-r}\left(X_{1}, \ldots, X_{n}\right) .
$$

Thus, $R_{k-r}\left(X_{1}, \ldots, X_{n}\right)=\left[X_{1}, \ldots, X_{n}\right]$, contradicting the minimality of k. Hence, a contradiction and therefore $r=0$. Or equivalently, k divides n.

Proposition 6.2.11. Let $S_{1}=\left\{P_{i_{1}}, P_{i_{2}}, \ldots, P_{i_{k}}\right\}$ and $S_{2}=\left\{P_{j_{1}}, P_{j_{2}}, \ldots, P_{j_{l}}\right\}$ be any two orbits of certain arrangements of an n-multiset. Then, either $S_{1} \cap S_{2}=\emptyset$ or $S_{1}=S_{2}$.

Proof. If $S_{1} \cap S_{2}=\emptyset$, then there is nothing to prove. So, let there exists an arrangement $P_{t} \in S_{1} \cap S_{2}$. Then, by definition, there exist rotations R_{1} and R_{2} such that $R_{1}\left(P_{i_{1}}\right)=P_{t}$ and $R_{2}\left(P_{j_{1}}\right)=P_{t}$. Thus, $R_{2}^{-1}\left(P_{t}\right)=P_{j_{1}}$ and hence $R_{2}^{-1}\left(R_{1}\left(P_{i_{1}}\right)\right)=R_{2}^{-1}\left(P_{t}\right)=P_{j_{1}}$. Therefore, we see that the arrangement $P_{j_{1}} \in S_{1}$ and hence $S_{2} \subseteq S_{1}$. A similar argument implies that $S_{1} \subseteq S_{2}$ and hence $S_{1}=S_{2}$.

Definition 6.2.12. [Binary operation] Let $\left[X_{1}, \ldots, X_{n}\right]$ and $\left[Y_{1}, \ldots, Y_{n}\right]$ be two arrangements of an n-multiset. Then, in the remainder of this section,

1. we shall consider expressions like $\left[X_{1}, \ldots, X_{n}\right]+\left[Y_{1}, \ldots, Y_{n}\right]$.
2. by $\left[R_{i}+R_{j}\right]\left(X_{1}, \ldots, X_{n}\right)$, we mean the expression $R_{i}\left(X_{1}, \ldots, X_{n}\right)+R_{j}\left(X_{1}, \ldots, X_{n}\right)$.
3. by $R_{i}\left(\left[X_{1}, \ldots, X_{n}\right]+\left[Y_{1}, \ldots, Y_{n}\right]\right)$ we denote the expression $R_{i}\left(X_{1}, \ldots, X_{n}\right)+R_{i}\left(Y_{1}, \ldots, Y_{n}\right)$.

Example 6.2.13. Think of all arrangements $P_{1}, \ldots, P_{n}, n=\frac{6!}{3!3!}$, of three A 's and three B 's. How many copies of $[A B C A B C]$ are there in $\left[R_{0}+\cdots+R_{5}\right]\left(P_{1}+\cdots+P_{n}\right)$?
Ans: Of course 6. To see this, note that R_{0} takes $[A B C A B C]$ to itself; R_{1} will take $[C A B C A B]$ to $[A B C A B C] ; R_{2}$ will take $[B C A B C A]$ to $[A B C A B C]$; and so on.

Example 6.2.14. Let $P=\left[X_{1}, \ldots, X_{12}\right]$ be an arrangement of a 12 -multiset with orbit size 3 . Since, the orbit size of P is 3 , the set $S=\left\{P, R_{1}(P), R_{2}(P)\right\}$ forms the orbit of P. Thus, the rotations R_{0}, R_{3}, R_{6} and R_{9} fix each element of S, i.e., $R_{i}\left(R_{j}(P)\right)=R_{j}(P)$ for all $i \in\{0,3,6,9\}$ and $j \in\{0,1,2\}$. In other words, $\left[R_{0}+\cdots+R_{11}\right](P)$ accounts for $\underline{4}$ counts of the same circular arrangement, where 4 is nothing but the number of rotations fixing P. Thus, we see that

$$
\begin{aligned}
{\left[R_{0}+R_{1}+\cdots\right.} & \left.+R_{11}\right]\left(P+R_{1}(P)+R_{2}(P)\right) \\
= & {\left[R_{0}+R_{1}+\cdots R_{11}\right](P)+\left[R_{0}+R_{1}+\cdots R_{11}\right]\left(R_{1}(P)\right) } \\
& \quad+\left[R_{0}+R_{1}+\cdots R_{11}\right]\left(R_{2}(P)\right) \\
= & 4\left(P+R_{1}(P)+R_{2}(P)\right)+4\left(P+R_{1}(P)+R_{2}(P)\right)+4\left(P+R_{1}(P)+R_{2}(P)\right) \\
= & 12\left(P+R_{1}(P)+R_{2}(P)\right)
\end{aligned}
$$

The proof of the next result is similar to the idea in the above example and hence is omitted.
Proposition 6.2.15. Let P_{1}, \ldots, P_{n} be all the arrangements of an m-multiset. Then,

$$
\left[R_{0}+\cdots+R_{m-1}\right]\left(P_{1}+\cdots+P_{n}\right)=m\left(P_{1}+\cdots+P_{n}\right)
$$

Let P be an arrangement of an m-multiset with orbit size k. Then, by Proposition 6.2.10 k divides m. Now, from the understanding obtained from the above example, we note that $\left[R_{0}+\cdots+R_{m-1}\right](P)$ accounts for $\frac{m}{k}$ counts of the same circular arrangement, where $\frac{m}{k}$ is nothing but 'the number of rotations fixing P '. Also, by Proposition 6.2.11, we know that two orbits are either disjoint or the same and hence the next two results are immediate. Therefore, the readers are supposed to provide a proof of the following results.

Discussion 6.2.16. Let P_{1}, \ldots, P_{n} be all the arrangements of an m-multiset. Then,

$$
\begin{aligned}
\sum_{P_{i}} \text { the number of rotations fixing } P_{i} & =\sum_{P_{i}}\left[R_{0}+\cdots+R_{m-1}\right]\left(P_{i}\right) \\
& =m\left(P_{1}+\cdots+P_{n}\right) \\
& =m \text { (the number of circular arrangements). }
\end{aligned}
$$

Discussion 6.2.17. Let P_{1}, \ldots, P_{n} be all the arrangements of an m-multiset and $\left\{R_{0}, R_{1}, \ldots, R_{m-1}\right\}$ the set of all rotations. Then,

$$
\begin{aligned}
\sum_{P_{i}} \text { the number of rotations fixing } P_{i} & =\sum_{P_{i}}\left|\left\{R_{j} \mid R_{j}\left(P_{i}\right)=P_{i}\right\}\right|=\left|\left\{\left(P_{i}, R_{j}\right) \mid R_{j}\left(P_{i}\right)=P_{i}\right\}\right| \\
& =\sum_{R_{j}}\left|\left\{P_{i} \mid R_{j}\left(P_{i}\right)=P_{i}\right\}\right| \\
& =\sum_{R_{j}} \text { the number of } P_{i} \text { 's fixed by } R_{j} .
\end{aligned}
$$

Hence, using Discussion 6.2.16, the number of circular arrangements is

$$
\frac{1}{m} \sum_{R_{j} \text { a rotation }} \text { the number of } P_{i} \text { 's fixed by } R_{j}
$$

Example 6.2.18. 1. How many circular arrangements of $\{A, A, A, B, B, B, C, C, C\}$ are there?
Ans: R_{0} fixes $\frac{9!}{3!3!3!}$ arrangements, None of $R_{1}, R_{2}, R_{4}, R_{5}, R_{7}$ and R_{8} fixes any arrangement, R_{3} and R_{6} fixes 3! arrangements, namely the 3! arrangements of X, Y, Z, where $X=A A A, Y=B B B$ and $Z=C C C$.
Thus, the number of circular arrangements is $\frac{1}{9}\left[\frac{9!}{3!3!3!}+3!+3!\right]=\frac{5 \cdot 6 \cdot 7 \cdot 8+12}{9}=\frac{564}{3}=188$.
2. Determine the number of circular arrangements of size 5 using the alphabets A, B and C.

Ans: In this case, R_{0} fixes all the 3^{5} arrangements. The rotations R_{1}, R_{2}, R_{3} and R_{4} fixes the arrangements $A A A A A, B B B B B$ and $C C C C C$. Hence, the required number is $\frac{1}{5}\left(3^{5}+4 \cdot 3\right)=51$.
Verify that the answer will be 8 if we have just two alphabets A and B.

EXERCISE 6.2.19. 1. If there are n girls and n boys then what is the number of ways of making them sit around a circular table in such a way that no two girls are adjacent and no two boys are adjacent?
2. Persons P_{1}, \ldots, P_{100} are seating on a circle facing the center and talking. If P_{i} talks lie, then the
(a) person to his right talks truth. So, the minimum number of persons talking truth is
\qquad -
(b) second person to his right talks truth'? So, the minimum number of persons talking truth is \qquad .
(c) next two persons to his right talk truth'? So, the minimum number of persons talking truth is \qquad .
3. How many distinct garlands can be formed using 6 flowers, if the flowers
(a) are of 2 colors, say 'red' and 'blue'.
(b) are of 3 different colors.
(c) are of k different colors, for some $k \in \mathbb{N}$.
(d) of 'red' color are 2 and that of 'blue' color is 4 .

6.3 Solutions in nonnegative integers

Definition 6.3.1. [Solution in nonnegative integers] Recall that $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. A point $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right) \in \mathbb{N}_{0}^{k}$ with $p_{1}+\cdots+p_{k}=n$ is called a solution of the equation $x_{1}+\cdots+x_{k}=n$ in nonnegative integers or a solution of $x_{1}+\cdots+x_{k}=n$ in \mathbb{N}_{0}. Two solutions $\left(p_{1}, \ldots, p_{k}\right)$ and $\left(q_{1}, \ldots, q_{k}\right)$ are said to be the same if $p_{i}=q_{i}$, for each $i=1, \ldots, k$. Thus, $(5,0,0,5)$ and $(0,0,5,5)$ are two different solutions of $x+y+z+t=10$ in \mathbb{N}_{0}.

Example 6.3.2. Determine the number of

1. words which uses $3 \quad A$'s and $6 B$'s.
2. arrangements of $3 \quad A$'s and $6 \quad B$'s.
3. distinct strings that can be formed using $3 A$'s and $6 B$'s.
4. solutions of the equation $x_{1}+x_{2}+x_{3}+x_{4}=6$, where each $x_{i} \in \mathbb{N}_{0}$ and $0 \leq x_{i} \leq 6$.
5. ways of placing 6 indistinguishable balls into 4 distinguishable boxes.
6. 3 subsets of an 9 -set.

Solution: Observe that all the problems correspond to forming strings using +'s (or |'s or bars) and 1's (or balls or dots) in place of A 'a and B 's, respectively?

Note that the A 's are indistinguishable among themselves and the same holds for B 's. Thus, we need to find 3 places, from the $9=3+6$ places, for the A 's. Hence, the answer

Figure 6.2: Understanding the three problems
is $C(9,3)$. The answer will remain the same as we just need to replace A 's with + 's (or |'s) and B 's with 1's (or balls) in any string of $3 A$'s and $6 B$'s. See Figure 6.2 or note that four numbers can be added using $3+$'s or four adjacent boxes can be created by putting 3 vertical lines or |'s.

In general, we have the following result.
Theorem 6.3.3. [solutions in \mathbb{N}_{0}] The number of solutions of $x_{1}+\cdots+x_{r}=n$ in \mathbb{N}_{0} is $C(n+r-1, n)$.

Proof. Each solution $\left(x_{1}, \ldots, x_{r}\right)$ may be viewed as an arrangement of n dots and $r-1$ bars.
'Put x_{1} many dots; put a bar; put x_{2} many dots; put another bar; continue; and end by putting x_{r} many dots.'
For example, $(0,2,1,0,0)$ is associated to $\mid \bullet \bullet \bullet \|$ and vice-versa. Thus, there are $C(n+r-$ $1, r-1$) arrangements of n dots and $r-1$ bars.

Theorem 6.3.4. (a) The number of solutions of $x_{1}+\cdots+x_{r} \leq n$ in nonnegative integers is $C(n+r, n)$.
(b) The number of terms in the algebraic expansion of $\left(x_{1}+\cdots+x_{r}\right)^{n}$ is $C(n+r-1, n)$.

Proof. (a) Any solution of $x_{1}+\cdots+x_{r} \leq n$ uniquely corresponds to a solution of $x_{1}+\cdots+x_{r}+y=$ n in nonnegative integers..
(b) Note that each term in the algebraic expansion of $\left(x_{1}+\cdots+x_{r}\right)^{n}$ has the form $x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{r}^{i_{r}}$, with $i_{1}+i_{2}+\cdots+i_{r}=n$. Thus, each term uniquely corresponds to a solution of $i_{1}+i_{2}+\cdots+i_{r}=n$ in nonnegative integers.

Theorem 6.3.5. [r-multiset] The number of r-multisets of elements of $[n]$ is $C(n+r-1, n-1)$.
Proof. Let A be an r-multiset. Let d_{i} be the number of copies of i in A. Then, any solution of $d_{1}+\cdots+d_{n}=r$ in nonnegative integers gives A uniquely. Hence, the conclusion.
Alternate. Put $A=\{$ arrangements of $n-1$ dots and r bars $\}$. Put $B=\{r$-multisets of $[n]\}$. For $a \in A$, define $f(a)$ to be the multiset

$$
f(a)=\{d(i)+1 \mid \text { where } d(i) \text { is the number of dots to the left of the } i \text {-th bar }\} .
$$

For example, $\|\bullet \bullet \mid \bullet\|$ gives us $\{1,1,3,4,4\}$. It is easy to define $g: B \rightarrow A$ so that $f(g(b))=b$, for each $b \in B$ and $g(f(a))=a$, for each $a \in A$. Thus, by the bijection principle (see Theorem 2.3.8), $|A|=|B|$. Also, we know that $|A|=C(n+r-1, n-1)$ and hence the required result follows.

Example 6.3.6. 1. There are 5 kinds of ice-creams available in our market complex. In how many ways can you buy 15 of them for a party?

Ans: Suppose you buy x_{i} ice-creams of the i-th type. Then, the problem is the same as finding the number of solutions of $x_{1}+\cdots+x_{5}=15$ in nonnegative integers.
2. How many solutions in \mathbb{N}_{0} are there to $x+y+z=60$ such that $x \geq 3, y \geq 4, z \geq 5$?

Ans: (x, y, z) is such a solution if and only if $(x-3, y-4, z-5)$ is a solution to $x+y+z=48$ in \mathbb{N}_{0}. So, answer is $C(50,2)$.
3. How many solutions in \mathbb{N}_{0} are there to $x+y+z=60$ such that $20 \geq x \geq 3,30 \geq y \geq$ $4,40 \geq z \geq 5$? Ans: We are looking for solution in \mathbb{N}_{0} of $x+y+z=48$ such that $x \leq 17, y \leq 26$ and $z \leq 35$. Let $A=\left\{(x, y, z) \in \mathbb{N}_{0}^{3} \mid x+y+z=48\right\}, A_{x}=\{(x, y, z) \in$ $\left.\mathbb{N}_{0}^{3} \mid x+y+z=48, x \geq 18\right\}, A_{y}=\left\{(x, y, z) \in \mathbb{N}_{0}^{3} \mid x+y+z=48, y \geq 27\right\}$ and $A_{z}=\left\{(x, y, z) \in \mathbb{N}_{0}^{3} \mid x+y+z=48, z \geq 36\right\}$. We know that $|A|=C(50,2)$. Our answer is then $C(50,2)-\left|A_{x} \cup A_{y} \cup A_{z}\right|$. Very soon we will learn to find the value of $\left|A_{x} \cup A_{y} \cup A_{z}\right|$.

Exercise 6.3.7. 1. Determine the number of solutions of $x+y+z=7$ with $x, y, z \in \mathbb{N}$?
2. Find the number of allocations of n identical objects to r distinct locations so that location i gets at least $p_{i} \geq 0$ elements, $i=1,2, \cdots, r$.
3. In how many ways can we pick integers $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}$, from [20] so that $x_{i}-x_{i-1} \geq 3, i=2,3,4,5$? Solve in three different ways.
4. Find the number of solutions in nonnegative integers of $a+b+c+d+e<11$.
5. In a room, there are 2 distinct book racks with 5 shelves each. Each shelf is capable of holding up to 10 books. In how many ways can we place 10 distinct books in two racks?
6. Determine the number of non-decreasing sequences of length r using the numbers $1,2, \ldots, n$.
7. How many 4-letter words (with repetition) are there with the letters in alphabetical order?
8. In how many ways can m indistinguishable balls be put into n distinguishable boxes with the restriction that no box is empty.
9. How many 26 -letter permutations of the ENGLISH alphabets have no 2 vowels together?
10. How many 26-letter permutations of the ENGLISH alphabets have at least two consonants between any two vowels?
11. How many 10 -element subsets of the ENGLISH alphabets have a pair of consecutive letters?
12. How many ways are there to distribute 50 balls to 5 persons if Ram and Shyam together get no more than 30 and Mohan gets at least 10?
13. How many arrangements of the letters of KAGARTHALAMNAGARTHALAM have no 2 vowels adjacent?
14. How many arrangements of the letters of RECURRENCERELATION have no 2 vowels adjacent?
15. How many ways are there to arrange the letters in $A B R A C A D A B R A A R C A D A$ such that the first
(a) A precedes the first B ?
(b) B precedes the first A and the first D precedes the first C ?
(c) B precedes the first A and the first A precedes the first C ?
16. How many ways are there to arrange the letters in KAGART H ALAM NAGART H AT AM such that the first
(a) A precedes the first T ?
(b) M precedes the first G and the first H precedes the first A ?
(c) M precedes the first G and the first T precedes the first G ?
17. In how many ways can we pick 20 letters from $10 A$'s, $15 B$'s and $15 C$'s?
18. Determine the number of ways to sit 10 men and 7 women so that no 2 women sit next to each other?
19. How many ways can 8 persons, including Ram and Shyam, sit in a row with Ram and Shyam not sitting next to each other?
20. Evaluate $\sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{i_{1}} \sum_{i_{3}=1}^{i_{2}} \cdots \sum_{i_{k}=1}^{i_{k-1}} 1$.

6.4 Set partitions

Definition 6.4.1. [Set partition] A partition of a set S is a collection of pairwise disjoint nonempty subsets whose union is S.

Example 6.4.2. (a) $\{\{1,2\},\{3\},\{4,5,6\}\},\{\{1,3\},\{2\},\{4,5,6\}\}$ and $\{\{1,2,3,4\},\{5\},\{6\}\}$ are both partitions of [6] into 3 subsets.
(b) There are $2^{n-1}-1$ partitions of $[n], n \geq 2$ into two subsets. To see this, observe that for each nontrivial subset $A \in \mathcal{P}([n])$, the set $\left\{A, A^{c}\right\}$ is a partition of $[n]$ into two subsets. Since, the total number of nontrivial subsets of $\mathcal{P}([n])$ equals $2^{n}-2$, the required result follows.
(c) Number of allocations of 7 students into 7 different project groups so that each group has one student, is $7!=C(7 ; 1,1,1,1,1,1,1)$ but the number of partitions of a set of 7 students into 7 subsets is 1 .
(d) In how many ways can I write $\{\{1,2\},\{3,4\},\{5,6\},\{7,8,9\},\{10,11,12\}\}$ on a piece of paper, with the condition that sets have to be written in a row in increasing size?

Ans: Let us write a few first.
$\{\{1,2\},\{3,4\},\{5,6\},\{7,8,9\},\{10,11,12\}\} \quad$ correct
$\{\{2,1\},\{3,4\},\{5,6\},\{7,8,9\},\{10,11,12\}\} \quad$ correct
$\{\{5,6\},\{3,4\},\{1,2\},\{10,11,12\},\{9,7,8\}\}$ correct
$\{\{2,3\},\{1,4\},\{5,6\},\{7,8,9\},\{10,11,12\}\} \quad$ incorrect, not the same partition
$\{\{2,1\},\{3,4\},\{7,8,9\},\{5,6\},\{10,11,12\}\} \quad$ incorrect, not satisfying the condition
There are $3!(2!)^{3} \times 2!(3!)^{2}$ ways. Notice that from each written partition, if I remove the brackets I get an arrangement of elements of [12].
(e) How many arrangements do I generate from a partition with p_{i} subsets of size $n_{i}, n_{1}<$ $\cdots<n_{k}$?
Ans: $p_{1}!\left(n_{1}!\right)^{p_{1}} \cdots p_{k}!\left(n_{k}!\right)^{p_{k}}=\prod_{i=1}^{k}\left[p_{i}!\left(n_{i}\right)^{p_{i}}\right]$.
Theorem 6.4.3. [Set partition] The number of partitions of $[n]$ with p_{i} subsets of size n_{i}, $n_{1}<\cdots<n_{k}$ is

$$
\frac{n!}{\left(n_{1}!\right)^{p_{1}} p_{1}!\cdots\left(n_{k}!\right)^{p_{k}} p_{k}!} .
$$

Proof. Note that each such partition generates $\prod_{i=1}^{k}\left[p_{i}!\left(n_{i}\right)^{p_{i}}\right]$ arrangement of elements of $[n]$. Conversely, for each arrangement of elements of $[n]$ we can easily construct a partition of the above type which can generate this arrangement. Thus, the proof is complete.

Definition 6.4.4. Stirling numbers of the second kind, denoted $\boldsymbol{S}(\boldsymbol{n}, r)$, is the number of partitions of $[n]$ into r-subsets (r-parts). By convention, $S(n, r)=1$, if $n=r$ and 0 , whenever either ' $n>0$ and $r=0$ ' or ' $n<r$ '.

Theorem 6.4.5. [recurrence for $S(n, r)$] $S(n+1, r)=S(n, r-1)+r S(n, r)$.
Proof. Write an r-partition of $[n+1]$ and erase $n+1$ from it. That is, if $\{n+1\}$ is an element of an r-partition, then the number of such partitions become $S(n, r-1)$; else $n+1$ appears in one of the element of an r-partition of $[n]$, which gives the number $r S(n, r)$.

Example 6.4.6. Determine the number of ways of putting n distinguishable/distinct balls into r indistinguishable boxes with the restriction that no box is empty.
Ans: Let A be the set of n distinct balls and let the balls in i-th box be $B_{i}, 1 \leq i \leq r$.

1. Since each box is non-empty, each B_{i} is non-empty.
2. Also, each ball is in some box and hence $\bigcup_{i=1}^{r} B_{i}=A$.
3. As the boxes are indistinguishable, we arrange the boxes in non-increasing order, i.e., $\left|B_{1}\right| \geq \cdots \geq\left|B_{r}\right|$.

Thus, $B_{1}, B_{2}, \ldots, B_{r}$ is a partition of A into r-parts. Hence, the required number of ways is given by $S(n, r)$, the Stirling number of the second kind.

To proceed further, consider the following example.
Example 6.4.7. Let $A=\{a, b, c, d, e\}$ and $S=\{1,2,3\}$. Define an onto function $f: A \rightarrow S$ by $f(a)=f(b)=f(c)=1, f(d)=2$ and $f(e)=3$. Then, f gives a partition $B_{1}=\{a, b, c\}, B_{2}=$ $\{d\}$ and $B_{3}=\{e\}$ of A into 3-parts. Also, let $A_{1}=\{a, d\}, A_{2}=\{b, e\}$ and $A_{3}=\{c\}$ be a partition of A into 3 -parts. Then, this partition gives 3 ! onto functions from A into S, each of them being a one-to-one function from $\left\{A_{1}, A_{2}, A_{3}\right\}$ to S, namely,

$$
\begin{aligned}
& f_{1}(a)=f_{1}(d)=1, f_{1}(b)=f_{1}(e)=2, f_{1}(c)=3, \quad \Leftrightarrow \quad f_{1}\left(A_{1}\right)=1, f_{1}\left(A_{2}\right)=2, f_{1}\left(A_{3}\right)=3 \\
& f_{2}(a)=f_{2}(d)=1, f_{2}(b)=f_{2}(e)=3, f_{2}(c)=2, \quad \Leftrightarrow \quad f_{2}\left(A_{1}\right)=1, f_{2}\left(A_{2}\right)=3, f_{2}\left(A_{3}\right)=2 \\
& f_{3}(a)=f_{3}(d)=2, f_{3}(b)=f_{3}(e)=1, f_{3}(c)=3, \quad \Leftrightarrow \quad f_{3}\left(A_{1}\right)=2, f_{3}\left(A_{2}\right)=1, f_{3}\left(A_{3}\right)=3 \\
& f_{4}(a)=f_{4}(d)=2, f_{4}(b)=f_{4}(e)=3, f_{4}(c)=1, \quad \Leftrightarrow f_{4}\left(A_{1}\right)=2, f_{4}\left(A_{2}\right)=3, f_{4}\left(A_{3}\right)=1 \\
& f_{5}(a)=f_{5}(d)=3, f_{5}(b)=f_{5}(e)=1, f_{5}(c)=2, \quad \Leftrightarrow f_{5}\left(A_{1}\right)=3, f_{5}\left(A_{2}\right)=1, f_{5}\left(A_{3}\right)=2 \\
& f_{6}(a)=f_{6}(d)=3, f_{6}(b)=f_{6}(e)=2, f_{6}(c)=1, \quad \Leftrightarrow \quad f_{6}\left(A_{1}\right)=3, f_{6}\left(A_{2}\right)=2, f_{6}\left(A_{3}\right)=1 .
\end{aligned}
$$

Lemma 6.4.8. The total number of onto functions $f:[r] \rightarrow[n]$ is $n!S(r, n)$.
Proof. ' f is onto' means 'for all $y \in[n]$ there exists $x \in[r]$, such that $f(x)=y$ '. Therefore, the number of onto functions is 0 , whenever $r<n$. So, we assume that $r \geq n$. Then,

1. for each $i \in[n], f^{-1}(i)=\{x \in[r] \mid f(x)=i\}$ is a non-empty set (f is onto).
2. $f^{-1}(i) \cap f^{-1}(j)=\emptyset$, whenever $1 \leq i \neq j \leq n$ (f is a function).
3. $\bigcup_{i=1}^{n} f^{-1}(i)=[r]$ (domain of f is $[r]$).

Therefore, $f^{-1}(i)$'s give a partition of $[r]$ into n-parts. Also, note that each such function f, gives a one-to-one function from $\left\{f^{-1}(1), \ldots, f^{-1}(r)\right\}$ to $[n]$.
Conversely, for each partition $A_{1}, A_{2}, \ldots, A_{n}$ of $[r]$ into n-parts, we get n ! one-to-one function from $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ to $[n]$. Hence,

$$
\left.\left.\begin{array}{rl}
\mid\{f:[r] \rightarrow[n] \mid f \text { is onto }\} \mid & =\mid\left\{g:\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\right.
\end{array}\right) \quad[n] \mid g \text { is one-to-one }\right\} \left\lvert\,, \begin{aligned}
& \times \mid \text { Partition of }[r] \text { into } n \text {-parts } \mid \\
& =n!S(r, n) .
\end{aligned}\right.
$$

Thus, the required result follows.
Lemma 6.4.9. Let $r, n \in \mathbb{N}$ and $\ell=\min \{r, n\}$. Then,

$$
\begin{equation*}
n^{r}=\sum_{k=1}^{\ell} C(n, k) k!S(r, k) \tag{6.1}
\end{equation*}
$$

Proof. Let $A=\{f \mid f:[r] \rightarrow[n]\}$. We compute $|A|$ by two different methods.
Method 1: By Theorem 6.1.4, $|A|=n^{r}$.
Method 2: Let $f_{0}: \quad[r] \rightarrow[n]$ be any function. Then, f_{0} is an onto function from $[r]$ to $\operatorname{Im}\left(f_{0}\right)=f_{0}([r])$. Moreover, , for some $k, 1 \leq k \leq \ell=\min \{r, n\}$. Thus, $A=\bigcup_{k=1}^{\ell} A_{k}$, where $A_{k}=\{f:[r] \rightarrow[n]| | f([r]) \mid=k\}$ and $A_{k} \cap A_{j}=\emptyset$, whenever $1 \leq j \neq k \leq \ell$. Now, using Theorem 6.1.20, a subset of $[n]$ of size k can be selected in $C(n, k)$ ways. Thus, for $1 \leq k \leq \ell$,

$$
\left|A_{k}\right|=|\{K: K \subseteq[n],|K|=k\}| \times \mid\{f:[r] \rightarrow K \mid f \text { is onto }\} \mid=C(n, k) k!S(r, k) .
$$

Therefore,

$$
|A|=\left|\bigcup_{k=1}^{\ell} A_{i}\right|=\sum_{k=1}^{\ell}\left|A_{k}\right|=\sum_{k=1}^{\ell} C(n, k) k!S(r, k)
$$

Hence, using the two counting methods, the required result follows.
Remark 6.4.10. 1. The following two problems are equivalent.
(a) Count the number of onto functions $f:[r] \rightarrow[n]$.
(b) Count the number ways to put r distinguishable/distinct balls into n distinguishable/distinct boxes so that no box is empty.
2. The numbers $S(r, k)$ can be recursively calculated using Equation (6.1). For example, we show that $S(m, 1)=1$, for all $m \geq 1$.
Ans: Take $n \geq 1$ and $r=1$ in Equation (6.1) to get $n=n^{1}=\sum_{k=1}^{1} C(n, k) k!S(1, k)=$ $C(n, 1) 1!S(1,1)=n S(1,1)$. Thus, $S(1,1)=1$.

Take $n=1$ and $r \geq 2$ in Equation (6.1) to get $1=1^{r}=\sum_{k=1}^{1} C(1, k) k!S(r, k)=S(r, 1)$.
3. As exercise, verify that $S(5,2)=15, S(5,3)=25, ; S(5,4)=10, S(5,5)=1$.

Exercise 6.4.11. 1. Determine the number of ways of
(a) selecting r distinguishable objects from n distinguishable objects, when $n \geq r$.
(b) distributing 20 distinct toys among 4 children if each children gets 5 toys?
(c) placing r distinguishable balls into n indistinguishable boxes if no box is empty?
(d) placing r distinguishable balls into n indistinguishable boxes?
2. For $n \in \mathbb{N}$, let $b(n)$ denote the number of partitions of $[n]$. Then, $b(n)=\sum_{r=0}^{n} S(n, r)$ is called the $n^{\text {th }}$ Bell number. By definition, $b(0)=1=b(1)$. Determine $b(n)$, for $2 \leq n \leq 5$.
3. Fix $n \in \mathbb{N}$. Then, a COMPOSITION of n is an expression of n as a sum of positive integers. For example, if $n=4$, then the distinct compositions are

$$
4,3+1, \quad 1+3, \quad 2+2, \quad 2+1+1, \quad 1+1+2, \quad 1+2+1, \quad 1+1+1+1
$$

Let $S_{k}(n)$ denote the number of compositions of n into k parts. Then, $S_{1}(4)=1, S_{2}(4)=$ $3, S_{3}(4)=3$ and $S_{4}(4)=1$. Determine $S_{k}(n)$, for $1 \leq k \leq n$ and $\sum_{k \geq 1} S_{k}(n)$.
4. Let $S=\{f \mid f:[r] \rightarrow[n]\}$. Compute $|S|$ in two ways to prove $(n+1)^{r}=\sum_{k=0}^{r} C(r, k) n^{k}$.
5. Suppose 13 people get on the lift at level o. If all the people get down at some level, say 1,2,3,4 and 5 then, calculate the number of ways of getting down if at least one person gets down at each level.

Definition 6.4.12. [Partition of a number] Let $n, k \in \mathbb{N}$. A partition of \boldsymbol{n} into \boldsymbol{k} parts is a tuple $\left(x_{1}, \cdots, x_{k}\right) \in \mathbb{N}^{k}$ written in non-increasing order such that $x_{1}+\cdots+x_{k}=n$. It may be viewed as a k-multiset $S \subseteq \mathbb{N}$ with sum n. By $\boldsymbol{\pi}_{n}(\boldsymbol{k})$, we denote the number of partitions of n into exactly k parts and by $\boldsymbol{\pi}_{\boldsymbol{n}}$, the number of partitions of n. Conventionally $\pi_{0}=1$ and $\pi_{n}(k)=0$, whenever $k>n$.
Remark 6.4.13. $\pi_{7}(4)=3$ as the partitions of 7 into 4 -parts are $4+1+1+1,3+2+1+1$ and $2+2+2+1$. Verify that $\pi_{7}(2)=3$ and $\pi_{7}(3)=4$.

Example 6.4.14. Determine the number of ways of placing r indistinguishable balls into n indistinguishable boxes

1. with the restriction that no box is empty.

Ans: As the balls are indistinguishable, we need to count the number of balls in each box. As the boxes are indistinguishable, arrange them so that the number of balls inside boxes are in non-increasing order. Also, each box is non-empty and hence the answer is $\pi_{r}(n)$.
2. with no restriction.

Ans: Let us place one ball in each box. Now 'placing r indistinguishable ball into n indistinguishable boxes with no restriction' is same as 'placing $r+n$ indistinguishable balls into n indistinguishable boxes so that no box is empty.' Therefore, the required answer is $\pi_{m+n}(n)$.

EXERCISE 6.4.15. 1. Calculate $\pi(n)$, for $n=1,2,3, \ldots, 8$.
2. Prove that $\pi_{2 r}(r)=\pi(r)$, for any $r \in \mathbb{N}$.
3. For a fixed $n \in \mathbb{N}$ determine a recurrence relation for the numbers $\pi_{n}(r)$'s for $1 \leq r \leq n$.

Definition 6.4.16. [Stirling number of first kind] The Stirling number of the first kind, denoted $\boldsymbol{s}(\boldsymbol{n}, \boldsymbol{k})$, is the coefficient of x^{k} in $x^{\underline{n}}$, where $\boldsymbol{x}^{\underline{n}}$ is called the falling factorial and equals $x(x-1)(x-2) \cdots(x-n+1)$. The rising factorial $\boldsymbol{x}^{\bar{n}}$ is defined as $x(x+1)(x+2) \cdots(x+n-1)$.
Exercise 6.4.17. Prove by induction that

1. $s(n, m)(-1)^{n-m}$ is the coefficient of x^{m} in $x^{\bar{n}}$ and $|s(n, m)|=s(n, m)(-1)^{n-m}$.
2. Let $a(n, k)$ denote the number of permutations of $[n]$ which have k disjoint cycles. For example, $a(4,2)=11$ as it corresponds to the permutations (12)(34), (13)(24), (14)(23), (1)(234), (1)(243), (134)(2), (143)(2), (124)(3), (142)(3), (123)(4) and (132)(4). By convention, $a(0,0)=1$ and $a(n, 0)=0=a(0, n)$, whenever $n \geq 1$. Determine prove that the numbers a (n, k) 's satisfy

$$
a(n, k)=(n-1) a(n-1, k)+a(n-1, k-1) .
$$

3. Prove that $a(n, m)=|s(n, m)|$ for all $n, m \in \mathbb{N}_{0}$.

6.5 Lattice paths and Catalan numbers

Consider a lattice of integer lines in \mathbb{R}^{2} and let $S=\{(m, n) \mid m, n=0,1, \ldots\}$ be the said of points on the lattice. For a pair of points, say $A=\left(m_{1}, n_{1}\right)$ and $B=\left(m_{2}, n_{2}\right)$ with $m_{1} \leq m_{2}$ and $n_{1} \leq n_{2}$, we define a lattice path from A to B to be a subset $\left\{e_{1}, \ldots, e_{k}\right\}$ of S such that if $e_{i}=(x, y)$ then e_{i+1} is either $(x+1, y)$ or $(x, y+1)$, for $1 \leq i \leq k-1$. That is, at each step we move either one unit right, denoted R, or one unit up, denoted U (see Figure 6.3).

Figure 6.3: A lattice with a lattice path from $(2,3)$ to $(8,7)$

Example 6.5.1. 1. Determine the number of lattice paths from $(0,0)$ to (m, n).
Ans: As at each step, the unit increase is either R or U, we need to take n many R steps and m many U steps to reach (m, n) from $(0,0)$. So, any arrangement of n many R 's and m many U 's will give such a path uniquely. Hence, the answer is $C(m+n, m)$.
2. Use the method of lattice paths to prove $\sum_{\ell=0}^{m} C(n+\ell, \ell)=C(n+m+1, m)$.

Ans: Observe that $C(n+m+1, m)$ is the number of lattice paths from $(0,0)$ to ($m, n+1$) and the left hand side is the number of lattice paths from $(0,0)$ to (ℓ, n), where $0 \leq \ell \leq m$. Fix $\ell, 0 \leq \ell \leq m$ and let P be a lattice path from $(0,0)$ to (ℓ, n). Then, the path $P \cup Q$, where $Q=U R R \cdots R$ with R appearing $m-\ell$ times, gives a lattice path from (0,0) to ($m, n+1$), namely

$$
(0,0) \xrightarrow{P}(\ell, n) \xrightarrow{U}(\ell, n+1) \xrightarrow{Q}(m, n+1) .
$$

These lattice paths for $0 \leq \ell \leq m$ are all distinct and hence the result follows.
ExERCISE 6.5.2. 1. Give a bijection between 'the solution set of $x_{0}+x_{1}+x_{2}+\cdots+x_{k}=n$ in non-negative integers' and 'the number of lattice paths from $(0,0)$ to (n, k) '.
2. Use lattice paths to construct a proof of $\sum_{k=0}^{n} C(n, k)=2^{n}$.
3. Use lattice paths to construct a proof of $\sum_{k=0}^{n} C(n, k)^{2}=C(2 n, n)$. [Hint: $C(n, k)$ is the number of lattice paths from $(0,0)$ to $(n-k, k)$ as well as from $(n-k, k)$ to (n, n).]

Discussion 6.5.3. As observed earlier, the number of lattice paths from $(0,0$ to (n, n) is $C(2 n, n)$. Suppose, we wish to take paths so that at no step the number of U 's exceeds the number of R 's. Then, what is the number of such paths?
Ans: Call an arrangement of n many U's and n many R 's a 'bad path' if the number of U 's exceeds the number of R 's at least once. For example, the path $R R U U U R R U$ is a 'bad path'. To each such arrangement, we correspond another arrangement of $n+1$ many U 's and $n-1$ many R 's in the following way: spot the first place where the number of U 's exceeds that of R 's in the 'bad path'. Then, from the next letter onwards change R to U and U to R. For example, the bad path $R R U U U R R U$ corresponds to the path $R R U U U U U R$. Notice that this is a one-one correspondence. Thus, the number of bad paths is $C(2 n, n-1)$. So, the answer to the question is $C(2 n, n)-C(2 n, n-1)=\frac{C(2 n, n)}{n+1}$.

Definition 6.5.4. [Catalan number] The nth Catalan number, denoted $\boldsymbol{C}_{\boldsymbol{n}}$, is the number of different representations of the product $A_{1} \cdots A_{n+1}$ of $n+1$ square matrices of the same size using n pairs of brackets. By convention $C_{0}=1$.

Theorem 6.5.5. [Catalan number] Prove that $C_{n}=\frac{C(2 n, n)}{n+1}$ for all $n \in \mathbb{N}$.
Proof. Claim: After the $(n-k)$-th '(', there are at least $k+2$ many A 's. To see this pick the substring starting right from the $(n-k)$-th '(' till we face $(k+1)$ many ')'s. This substring represents a product of matrices. So, it must contain $(k+2)$ many A_{i} 's.
Given one representation of the product, replace each A_{i} by A. Drop the right brackets to have a sequence of n many '('s and $n+1$ many A 's. Thus, the number of A 's used till the $n-k$ th '(' is at most $n+1-(k+2)=n-k-1$. So, the number of A 's never exceeds the number of '('. Conversely, given such an arrangement, we can put back the ')'s: find two consecutive letters from the last '('; put a right bracket after them; treat $(A A)$ as a letter; repeat the process. For example,

$$
((A((A A A A \rightarrow((A((A A) A A \rightarrow((A((A A) A) A \rightarrow((A((A A) A)) A=((A((A A) A)) A)
$$

By previous example the number of such arrangements is $\frac{C(2 n, n)}{n+1}$.
The readers who are interested in knowing more about Catalan numbers should look at the book "enumerative combinatorics" by Stanley [11].
EXERCISE 6.5.6. 1. Give a recurrence relation for C_{n} 's (i.e., a formula for C_{n} involving $\left.C_{0}, \ldots, C_{n-1}\right)$. Hence, show that $C_{n}=C(2 n, n) /(n+1)$.
2. Give an arithmetic proof of the fact that $(n+1)$ divides $C(2 n, n)$.
3. A man is standing on the edge of a swimming pool (facing it) holding a bag containing n blue and n red balls. He randomly picks up one ball at a time and discards it. If the ball is blue he takes a step back and if the ball is red, he takes a step forward. What is the probability of his falling into the swimming pool?
4. Consider a regular polygon with vertices $1,2, \cdots, n$. In how many ways can we divide the polygon into triangles using $(n-3)$ noncrossing diagonals?
5. How many arrangements of n blue and n red balls are there such that at any position in the arrangement the number of blue balls (till that position) is at most one more than the number of red balls (till that position)?
6. We want to write a matrix of size 10×2 using numbers $1, \ldots, 20$ with each number appearing exactly once. Then, determine the number of such matrices in which the numbers
(a) increase from left to right?
(b) increase from up to down?
(c) increase from left to right and up to down?

6.6 Some Generalizations

1. Let $n, k \in \mathbb{N}$ with $0 \leq k \leq n$. Then, in Theorem 6.1.20, we saw that $C(n, k)=\frac{n!}{k!(n-k)!}$. Hence, we can think of $C(n, k)=\frac{n \cdot(n-1) \cdots(n-k+1)}{k!}$. With this understanding, we generalize $C(n, k)$ for any $n \in \mathbb{R}$ and $k \in \mathbb{N}_{0}$ as follows:

$$
C(n, k)= \begin{cases}0, & \text { if } k<0 \tag{6.2}\\ 0, & \text { if } n=0, n \neq k \\ 1, & \text { if } n=k \\ \frac{n \cdot(n-1) \cdots(n-k+1)}{k!}, & \text { otherwise. }\end{cases}
$$

With the notations as above, we give the generalized binomial theorem without proof.
Theorem 6.6.1. [Generalized binomial theorem] Let n be any real number. Then,

$$
(1+x)^{n}=1+C(n, 1) x+C(n, 2) x^{2}+\cdots+C(n, r) x^{r}+\cdots .
$$

In particular, $(1-x)^{-1}=1+x+x^{2}+x^{3}+\cdots$ and if $a, b \in \mathbb{R}$ with $|a|<|b|$, then

$$
(a+b)^{n}=b^{n}\left(1+\frac{a}{b}\right)^{n}=b^{n} \sum_{r \geq 0} C(n, r)\left(\frac{a}{b}\right)^{r}=\sum_{r \geq 0} C(n, r) a^{r} b^{n-r} .
$$

Let us now understand Theorem 6.6.1 through the following examples.
(a) Let $n=\frac{1}{2}$. In this case, for $k \geq 1$, Equation (6.2) gives

$$
C\left(\frac{1}{2}, k\right)=\frac{\frac{1}{2} \cdot\left(\frac{1}{2}-1\right) \cdots\left(\frac{1}{2}-k+1\right)}{k!}=\frac{1 \cdot(-1) \cdots(3-2 k)}{2^{k} k!}=\frac{(-1)^{k-1}(2 k-2)!}{2^{2 k-1}(k-1)!k!} .
$$

Thus,

$$
(1+x)^{1 / 2}=\sum_{k \geq 0} C\left(\frac{1}{2}, k\right) x^{k}=1+\frac{1}{2} x+\frac{-1}{2^{3}} x^{2}+\frac{1}{2^{4}} x^{3}+\sum_{k \geq 4} \frac{(-1)^{k-1}(2 k-2)!}{2^{2 k-1}(k-1)!k!} x^{k} .
$$

The above expression can also be obtained by using the Taylor series expansion of $f(x)=(1+x)^{1 / 2}$ around $x=0$. Recall that the Taylor series expansion of $f(x)$ around $x=0$ equals $f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\sum_{k \geq 3} \frac{f^{(k)}(0)}{k!} x^{k}$, where $f(0)=1$, $f^{\prime}(0)=\frac{1}{2}, f^{\prime \prime}(0)=\frac{-1}{2^{2}}$ and in general $f^{(k)}(0)=\frac{1}{2} \cdot\left(\frac{1}{2}-1\right) \cdots\left(\frac{1}{2}-k+1\right)$, for $k \geq 3$.
(b) Let $n=-r$, where $r \in \mathbb{N}$. Then, for $k \geq 1$, Equation (6.2) gives $C(-r, k)=$

$$
\begin{aligned}
& \frac{-r \cdot(-r-1) \cdots(-r-k+1)}{k!}=(-1)^{k} C(r+k-1, k) \text {. Thus, } \\
& (1+x)^{n}=\frac{1}{(1+x)^{r}}=1-r x+C(r+1,2) x^{2}+\sum_{k \geq 3} C(r+k-1, k)(-x)^{k} .
\end{aligned}
$$

2. Let $n, m \in \mathbb{N}$. Recall the identity $n^{m}=\sum_{k=0}^{m} C(n, k) k!S(m, k)=\sum_{k=0}^{n} C(n, k) k!S(m, k)$ in Equation (6.1). Note that for each $m \in \mathbb{N}$, the above identity equals $X=A Y$, where

$$
X=\left[\begin{array}{c}
0^{m} \\
1^{m} \\
2^{m} \\
3^{m} \\
\vdots \\
n^{m}
\end{array}\right], \quad A=\left[\begin{array}{ccccc}
C(0,0) & 0 & 0 & \cdots & 0 \\
C(1,0) & C(1,1) & 0 & \cdots & 0 \\
C(2,0) & C(2,1) & C(2,2) & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C(n, 0) & C(n, 1) & C(n, 2) & \cdots & C(n, n)
\end{array}\right] \text { and } Y=\left[\begin{array}{c}
0!S(m, 0) \\
1!S(m, 1) \\
2!S(m, 2) \\
\vdots \\
n!S(m, n)
\end{array}\right]
$$

As A is lower triangular with $\operatorname{det}(A)=1$, it has an inverse and each entry of A^{-1} has a similar form. So, $Y=A^{-1} X$, where

$$
A^{-1}=\left[\begin{array}{cccccc}
C(0,0) & 0 & 0 & 0 & \cdots & 0 \\
-C(1,0) & C(1,1) & 0 & 0 & \cdots & 0 \\
C(2,0) & -C(2,1) & C(2,2) & 0 & \cdots & 0 \\
-C(3,0) & C(3,1) & -C(3,2) & C(3,3) & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
(-1)^{n} C(n, 0) & (-1)^{n-1} C(n, 1) & (-1)^{n-2} C(n, 2) & (-1)^{n-3} C(n, 3) & \cdots & C(n, n)
\end{array}\right] .
$$

Hence, for $n, m \in \mathbb{N}$, we have

$$
\begin{equation*}
S(m, n)=\frac{1}{n!} \sum_{k \geq 0}(-1)^{k} C(n, k)(n-k)^{m} \tag{6.3}
\end{equation*}
$$

3. The above matrix inversion implies that for $n \in \mathbb{N}_{0}$, the identity

$$
a(n)=\sum_{k \geq 0} C(n, k) b(k) \text { holds if and only if } b(n)=\sum_{k \geq 0}(-1)^{k} C(n, k) a(k) \text { holds. }
$$

We end this chapter with another set of exercises.
EXERCISE 6.6.2. 1. Prove that there exists a bijection between any two of the following sets.
(a) The set of words of length n on an alphabet consisting of m letters.
(b) The set of maps of an n-set into an m-set.
(c) The set of distributions of n distinct objects into m distinct boxes.
(d) The set of n-tuples on m letters.
2. Prove that there exists a bijection between any two of the following sets.
(a) The set of n letter words with distinct letters out of an alphabet consisting of m letters.
(b) The set of one-one functions from an n-set into an m-set.
(c) The set of distributions of n distinct objects into m distinct boxes, subject to 'if an object is put in a box, no other object can be put in the same box'.
(d) The set of n-tuples on m letters, without repetition.
(e) The set of permutations of m symbols taken n at a time.
3. Prove that there exists a bijection between any two of the following sets.
(a) The set of increasing words of length n on m ordered letters.
(b) The set of distributions on n non-distinct objects into m distinct boxes.
(c) The set of combinations of m symbols taken n at a time with repetitions permitted.

Chapter 7

Advanced Counting Principles

7.1 Pigeonhole Principle

Discussion 7.1.1. [Pigeonhole principle (PHP)]

(PHP1) If $n+1$ pigeons stay in n holes then there is a hole with at least two pigeons.
(PHP2) If $k n+1$ pigeons stay in n holes then there is a hole with at least $k+1$ pigeons.
(PHP3) If $p_{1}+\cdots+p_{n}+1$ pigeons stay in n holes then there is a hole i with at least $p_{i}+1$ pigeons.

Example 7.1.2. 1. Consider a tournament of $n>1$ players, where each pair plays exactly once and each player wins at least once. Then, there are two players with the same number of wins.

Ans: Number of wins vary from 1 to $n-1$ and there are n players.
2. A bag contains 5 red, 8 blue, 12 green and 7 yellow marbles. The least number of marbles to be chosen to ensure that there are
(a) at least 4 marbles of the same color is 13 ,
(b) at least 7 marbles of the same color is 24 ,
(c) at least 4 red or at least 7 of any other color is 22 .
3. In a group of 6 people, prove that there are three mutual friends or three mutual strangers.

Ans: Let a be a person in the group. Let F be the set of friends of a and S the set of strangers to a. Clearly $|S|+|F|=5$. By PHP either $|F| \geq 3$ or $|S| \geq 3$.
Case 1: $|F| \geq 3$. If any two in F are friends then those two along with a are three mutual friends. Else F is a set of mutual strangers of size at least 3 .

Case 2: $|S| \geq 3$. If any pair in S are strangers then those two along with a are three mutual strangers. Else S becomes a set of mutual friends of size at least 3 .
4. If 7 points are chosen inside or on the unit circle, then there is a pair of points which are at a distance at most 1 .

Ans: To see this divide the circle into 6 equal cone type parts creating an angle of 60° with the center. By PHP there is a part containing at least two points. The distance between these two is at most 1 .

5 . If $n+1$ integers are selected from [2n], then there is a pair which has the property that one of them divides the other.

Ans: Each number has the form $2^{k} O$, where O is an odd number. There are n odd numbers. If we select $n+1$ numbers from S, by PHP some two of them (say, x, y) have the same odd part, that is, $x=2^{i} O$ and $y=2^{j} O$. If $i \leq j$, then $x \mid y$, otherwise $y \mid x$.
6. (a) Let $r_{1}, r_{2}, \cdots, r_{m n+1}$ be a sequence of $m n+1$ distinct real numbers. Then, prove that there is a subsequence of $m+1$ numbers which is increasing or there is a subsequence of $n+1$ numbers which is decreasing.
Ans: Define l_{i} to be the maximum length of an increasing subsequence starting at r_{i}. If some $l_{i} \geq m+1$ then we have nothing to prove. So, let $1 \leq l_{i} \leq m$. Since $\left(l_{i}\right)$ is a sequence of $m n+1$ integers, by PHP, there is one number which repeats at least $n+1$ times. Let $l_{i_{1}}=l_{i_{2}}=\cdots=l_{i_{n+1}}=s$, where $i_{1}<i_{2}<\cdots<i_{n+1}$. Notice that $r_{i_{1}}>r_{i_{2}}$, because if $r_{i_{1}} \leq r_{i_{2}}$, then ' $r_{i_{1}}$ together with the increasing sequence of length s starting with $r_{i_{2}}{ }^{\prime}$ gives an increasing sequence of length $s+1$. Similarly, $r_{i_{2}}>r_{i_{3}}>\cdots>r_{i_{n+1}}$ and hence the required result holds.
(b) Does the above statement hold for every collection of $m n$ distinct numbers? No. Consider the sequence:

$$
n, n-1, \cdots, 1,2 n, 2 n-1, \cdots, n+1,3 n, 3 n-1, \cdots, 2 n+1, \cdots, m n, m n-1, \cdots, m n-n+1 .
$$

7. Given any 1005 integers, prove that there is a pair that either differ by, or sum to, a multiple of 2007 . Is this true if we replace 1005 by 1004 ?

Ans: Let the numbers be $n_{1}, n_{2}, \cdots, n_{1005}$ and $S=\left\{n_{1}-n_{k}, n_{1}+n_{k}: k=2, \cdots, 1005\right\}$. Then, $|S|=2008$ and hence, at least two of them will have the same remainder when divided by 2007. Then, consider their difference. For the later part, consider $\{0,1,2, \ldots, 1003\}$.
8. Let $a \in \mathbb{Q}^{c}$. Then, there are infinitely many rational numbers $\frac{p}{q}$ such that $\left|a-\frac{p}{q}\right|<\frac{1}{q^{2}}$.

Ans: Enough to show that there are infinitely many $(p, q) \in \mathbb{Z}^{2}$ with $|q a-p|<\frac{1}{q}$. Note that for every $m \in \mathbb{N}, 0<i a-\lfloor i a\rfloor<1$, for $i=1, \ldots, m+1$. Hence, by PHP there exist i, j with $i<j$ such that

$$
|(j-i) a-(\lfloor j a\rfloor-\lfloor i a\rfloor)|<\frac{1}{m} \leq \frac{1}{j-i} .
$$

Then, the tuple $\left(p_{1}, q_{1}\right)=(\lfloor j a\rfloor-\lfloor i a\rfloor, j-i)$ satisfies the required property. To generate another tuple, find m_{2} such that

$$
\frac{1}{m_{2}}<\left|a-\frac{p_{1}}{q_{1}}\right|
$$

and proceed as before to get $\left(p_{2}, q_{2}\right)$ such that $\left|q_{2} a-p_{2}\right|<\frac{1}{m_{2}} \leq \frac{1}{q_{2}}$. Since $\left|a-\frac{p_{2}}{q_{2}}\right|<\frac{1}{m_{2}}<$ $\left|a-\frac{p_{1}}{q_{1}}\right|$, we have $\frac{p_{1}}{q_{1}} \neq \frac{p_{2}}{q_{2}}$. Now use induction to get the required result.
9. Prove that there exist two powers of 3 whose difference is divisible by 2017.

Ans: Let $S=\left\{1=3^{0}, 3,3^{2}, 3^{3}, \ldots, 3^{2017}\right\}$. Then, $|S|=2018$. As the remainders of any integer when divided by 2017 is $0,1,2, \ldots, 2016$, by PHP, there is a pair which has the same remainder. Hence, 2017 divides $3^{j}-3^{i}$ for some i, j.
10. Prove that there exists a power of three that ends with 0001 .

Ans: Let $S=\left\{1=3^{0}, 3,3^{2}, 3^{3}, \ldots\right\}$. Now, divide each element of S by 10^{4}. As $|S|>10^{4}$, by PHP, there exist $i>j$ such that the remainders of 3^{i} and 3^{j}, when divided by 10^{4}, are equal. But $\operatorname{gcd}\left(10^{4}, 3\right)=1$ and thus, 10^{4} divides $3^{\ell}-1$. That is, $3^{\ell}-1=s \cdot 10^{4}$ for some positive integer s. That is, $3^{\ell}=s \cdot 10^{4}+1$ and hence the result follows.
Exercise 7.1.3. 1. Consider the poset $(X=\mathcal{P}([4]), \subseteq)$. Write 6 maximal chains $P_{1}, \ldots P_{6}$ (need not be disjoint) such that $\cup P_{i}=X$. Let A_{1}, \ldots, A_{7} be 7 distinct subsets of [4]. Use PHP, to prove that there exist i, j, j such that $A_{i}, A_{j} \in P_{k}$, for some k. That is, $\left\{A_{1}, \ldots, A_{7}\right\}$ cannot be an anti-chain. Conclude that this holds as the width of the poset is 6 .
2. Let $\left\{x_{1}, \ldots, x_{9}\right\} \subseteq \mathbb{N}$ with $\sum_{i=1}^{9} x_{i}=30$. Then, there exist $i, j, k \in[9]$ with $x_{i}+x_{j}+x_{k} \geq 12$.
3. Pick any 6 integers from [10], then there exists a pair with odd sum.
4. Any 14-subset of [46] has four elements a, b, c, d such that $a+b=c+d$.
5. In a row of 12 chairs 9 are filled. Then, some 3 consecutive chairs are filled. Will 8 work?
6. Every n-sequence of integers has a consecutive subsequence with sum divisible by n.
7. Let $n>3$ and $S \subseteq[n\rfloor$ of size $m=\left\lfloor\frac{n+2}{2}\right\rfloor+1$. Then, there exist $a, b, c \in S$ such that $a+b=c$.
8. Let $a, b \in \mathbb{N}, a<b$. Given more than half of the integers in the set $[a+b]$, there is a pair which differ by either a or b.
9. Consider a chess board with two of the diagonally opposite corners removed. Is it possible to cover the board with pieces of rectangular dominos whose size is exactly two board squares?
10. Mark the centers of all squares of an 8×8 chess board. Is it possible to cut the board with 13 straight lines not passing through any center, so that every piece had at most 1 center?
11. Fifteen squirrels have 100 nuts. Then, some two squirrels have equal number of nuts.
12. Suppose that $f(x)$ is a polynomial with integer coefficients. If
(a) $f(x)=2$ for three distinct integers, then for no integer $x, f(x)$ can be equal to 3 .
(b) $f(x)=14$ for three distinct integers, then for no integer $x, f(x)$ can be equal to 15 .
(c) $f(x)=11$ for five distinct integers, then for no integer $x, f(x)$ can be equal to 9 .
13. Choose 5 points at random inside an equilateral triangle of side 1 unit, then there exists a pair which have distance at most 0.5 units.
14. Prove that among any 55 integers $1 \leq x_{1}<x_{2}<x_{3}<\cdots<x_{55} \leq 100$, there is a pair with difference 9, a pair with difference 10, a pair with difference 12 and a pair with difference 13. Surprisingly, there need not be a pair with difference 11.
15. Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subseteq \mathbb{Z}$. Prove that there exist $1 \leq i<j \leq n$ such that
(a) $x_{i}+x_{i+1}+\cdots+x_{j-1}+x_{j}$ is a multiple of 2017, whenever $n \geq 2017$.
(b) $x_{j}+x_{i}$ or $x_{j}-x_{i}$ is a multiple of 2017, whenever $n \geq 1009$.
16. Let A and B be two discs, each having $2 n$ equal sectors. On disc A, n sectors are colored red and n are colored blue. The sectors of disc B are colored arbitrarily with red and blue colors. Show that there is a way of putting the two discs, one above the other, so that at least n corresponding sectors have the same colors.
17. There are 7 distinct real numbers. Is it possible to select two of them, say x and y such that $0<\frac{x-y}{1+x y}<\frac{1}{\sqrt{3}}$?
18. If n is odd then for any permutation p of $[n]$ the product $\prod_{i=1}^{n}(i-p(i))$ is even.
19. Fix a positive $\alpha \in \mathbb{Q}^{c}$. Then, $S=\{m+n \alpha: m, n \in \mathbb{Z}\}$ is dense in \mathbb{R}.
20. Take 25 points on a plane satisfying 'among any three of them there is a pair at a distance less than 1'. Then, some circle of unit radius contains at least 13 of the given points.
21. Five points are chosen at the nodes of a square lattice (view $\mathbb{Z} \times \mathbb{Z}$). Why is it certain that a mid-point of some two of them is a lattice point?
22. Each of the given 9 lines cuts a given square into two quadrilaterals whose areas are in the ratio 2:3. Prove that at least three of these lines pass through the same point.
23. If more than half of the subsets of $[n]$ are selected, then some two of the selected subsets have the property that one is a subset of the other.
24. Given any ten 4-subsets of [11], some two of them have at least 2 elements in common.
25. A person takes at least one aspirin a day for 30 days. If he takes 45 aspirin altogether, in some sequence of consecutive days he takes exactly 14 aspirins.
26. If 58 entries of a 14×14 matrix are 1 , then there is a 2×2 submatrix whose all entries 1 .

Exercise 7.1.4. 1. If each point of a circle is colored either red or blue, then show that there exists an isosceles triangle with vertices of the same color.
2. Each point of the plane is colored red or blue, then prove the following.
(a) There exist two points of the same color which are at a distance of 1 unit.
(b) There is an equilateral triangle all of whose vertices have the same color.
(c) There is a rectangle all of whose vertices have the same color.
3. Let $S \subseteq[100]$ be a 10 -set. Then, some two disjoint subsets of S have equal sum.
4. For $n \in \mathbb{N}$, prove that there exists a $\ell \in \mathbb{N}$ such that n divides $2^{\ell}-1$.
5. Does there exist a multiple of 2017 that is formed using only the digits
(a) 2? Justify your answer.
(b) 2 and 3 and the number of 2's and 3's are equal? Justify your answer.
6. Each natural number has a multiple of the form $9 \cdots 90 \cdots 0$, with at least one 9 .

7.2 Principle of Inclusion and Exclusion

We start this section with the following example.
Example 7.2.1. How many natural numbers $n \leq 1000$ are not divisible by any of 2,3 ?
Ans: Let $A_{2}=\{n \in \mathbb{N}|n \leq 1000,2| n\}$ and $A_{3}=\{n \in \mathbb{N}|n \leq 1000,3| n\}$. Then, $\left|A_{2} \cup A_{3}\right|=\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{2} \cap A_{3}\right|=500+333-166=667$. So, the required answer is $1000-667=333$.

We now generalize the above idea whenever we have 3 or more sets.
Theorem 7.2.2. [Principle of inclusion and exclusion] Let A_{1}, \cdots, A_{n} be finite subsets of a set U. Then,

$$
\begin{equation*}
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{k=1}^{n}(-1)^{k+1}\left[\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|\right] . \tag{7.1}
\end{equation*}
$$

Or equivalently, the number of elements of U which are in none of $A_{1}, A_{2}, \ldots, A_{n}$ equals

$$
|U|-\left|\cup_{i=1}^{n} A_{i}\right|=|U|-\sum_{k=1}^{n}(-1)^{k}\left[\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|\right] .
$$

Proof. Let $x \notin \bigcup_{i=1}^{n} A_{i}$. Then, we show that inclusion of x in some A_{i} contributes (increases the value) 1 to both sides of Equation (7.1). So, assume that x is included only in the sets A_{1}, \cdots, A_{r}. Then, the contribution of x to $\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|$ is 1 if and only if $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq[r]$. Hence, the contribution of x to $\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|$ is $C(r, k)$. Thus, the contribution of x to the right hand side of Equation (7.1) is

$$
r-C(r, 2)+C(r, 3)-\cdots+(-1)^{r+1} C(r, r)=1
$$

The element x clearly contributes 1 to the left hand side of Equation (7.1) and hence the required result follows. The proof of the equivalent condition is left for the readers.

Example 7.2.3. How many integers between 1 and 10000 are divisible by none of $2,3,5,7$?
Ans: For $i \in\{2,3,5,7\}$, let $A_{i}=\{n \in \mathbb{N}|n \leq 10000, i| n\}$. Therefore, the required answer is $10000-\left|A_{2} \cup A_{3} \cup A_{5} \cup A_{7}\right|=2285$.

Definition 7.2.4. [Euler totient function] For a fixed $n \in \mathbb{N}$, the Euler's totient function is defined as $\varphi(n)=|\{k \in \mathbb{N}: k \leq n, \operatorname{gcd}(k, n)=1\}|$.
Theorem 7.2.5. Let $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$, be a factorization of n into distinct primes p_{1}, \ldots, p_{k}. Then, $\varphi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)$.
Proof. For $1 \leq i \leq k$, let $A_{i}=\left\{m \in \mathbb{N}: m \leq n, p_{i} \mid m\right\}$. Then,

$$
\begin{aligned}
\varphi(n) & =n-\left|\cup A_{i}\right|=n\left[1-\sum_{i=1}^{k} \frac{1}{p_{i}}+\sum_{1 \leq i<j \leq k} \frac{1}{p_{i} p_{j}}-\cdots+(-1)^{k} \frac{1}{p_{1} p_{2} \cdots p_{k}}\right] \\
& =n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
\end{aligned}
$$

as $\left|A_{i}\right|=\frac{n}{p_{i}},\left|A_{i} \cap A_{j}\right|=\frac{n}{p_{i} p_{j}}$ and so on. Thus, the required result follows.

Definition 7.2.6. [Derangement]A derangement of objects in a finite set S is a permutation/arrangement σ on S such that for all $x, \sigma(x) \neq x$.

For example, $2,1,4,3$ is a derangement of $1,2,3,4$. The number of derangements of $1,2, \ldots, n$ is denoted by D_{n}. By convention, $D_{0}=1$. Also, we use $a \approx b$ to mean that b is an approximate value of a.

Theorem 7.2.7. For $n \in \mathbb{N}, D_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$. Thus, $\frac{D_{n}}{n!} \approx \frac{1}{e}$.
Proof. For each $i, 1 \leq i \leq n$, let A_{i} be the set of arrangements σ such that $\sigma(i)=i$. Then, verify that $\left|A_{i}\right|=(n-1)!,\left|A_{i} \cap A_{j}\right|=(n-2)$! and so on. Thus,

$$
\left|\bigcup_{i} A_{i}\right|=n \cdot(n-1)!-C(n, 2)(n-2)!+\cdots+(-1)^{n-1} C(n, n) 0!=n!\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k!} .
$$

So, $D_{n}=n!-\overline{\overline{\bigcup_{i}}}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$. Furthermore, $\lim _{n \rightarrow \infty} \frac{D_{n}}{n!}=\frac{1}{e}$.
Example 7.2.8. For $n \in \mathbb{N}$, how many squarefree integers do not exceed n ?
Ans: Let $P=\left\{p_{1}, \cdots, p_{s}\right\}$ be the set of primes not exceeding \sqrt{n} and for $1 \leq i \leq s$, let A_{i} be the set of integers between 1 and n that are multiples of p_{i}^{2}. It is easy to see that

$$
\left|A_{i}\right|=\left\lfloor\frac{n}{p_{i}^{2}}\right\rfloor, \quad\left|A_{i} \cap A_{j}\right|=\left\lfloor\frac{n}{p_{i}^{2} p_{j}^{2}}\right\rfloor,
$$

and so on. So, the number of squarefree integers not greater than n is

$$
n-\left|\bigcup_{i=1}^{s} A_{i}\right|=n-\sum_{i=1}^{s}\left\lfloor\frac{n}{p_{i}^{2}}\right\rfloor+\sum_{1 \leq i<j \leq s}\left\lfloor\frac{n}{p_{i}^{2} p_{j}^{2}}\right\rfloor-\sum_{1 \leq i<j<k \leq s}\left\lfloor\frac{n}{p_{i}^{2} p_{j}^{2} p_{k}^{2}}\right\rfloor+\cdots
$$

For $n=100$, we have $P=\{2,3,5,7\}$. So, the number of squarefree integers not exceeding 100 is

$$
100-\left\lfloor\frac{100}{4}\right\rfloor-\left\lfloor\frac{100}{9}\right\rfloor-\left\lfloor\frac{100}{25}\right\rfloor-\left\lfloor\frac{100}{49}\right\rfloor+\left\lfloor\frac{100}{36}\right\rfloor+\left\lfloor\frac{100}{100}\right\rfloor=61 .
$$

Exercise 7.2.9. 1. Let $m, n \in \mathbb{N}$ with $\operatorname{gcd}(m, n)=1$. Then, $\varphi(m n)=\varphi(m) \varphi(n)$.
2. Let $n \in \mathbb{N}$. Then, use inclusion-exclusion to prove $S(n, r)=\frac{1}{r!} \sum_{i=0}^{r}(-1)^{i} C(r, i)(r-i)^{n}$.
3. In a school there are 12 students who take an art course A, 20 who take a biology course $B, 20$ who take a chemistry course C and 8 who take a dance course D. There are 5 students who take both A and $B, 7$ students who take both A and $C, 4$ students who take both A and $D, 16$ students who take both B and $C, 4$ students who take both B and D and 3 students who take who take both C and D. There are 3 who take A, B and $C ; 2$ who take A, B and $D ; 3$ who take A, C and D; and 2 who take B, C and D. Finally there are 2 in all four courses and further 71 students who have not taken any of these courses. Find the total number of students.
4. Find the number of nonnegative integer solutions of $a+b+c+d=27$, where $1 \leq a \leq$ $5,2 \leq b \leq 7,3 \leq c \leq 9,4 \leq d \leq 11$.
5. Determine all integers n satisfying $\varphi(n)=13$.
6. Determine all integers n satisfying $\varphi(n)=12$.
7. For each fixed $n \in \mathbb{N}$, use mathematical induction to prove that $\sum_{d \mid n} \varphi(d)=n$.
8. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is said to be multiplicative if $f(n m)=f(n) f(m)$, whenever $\operatorname{gcd}(n, m)=1$.
(a) Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$ be functions satisfying $f(n)=\sum_{d \mid n} g(d)$ and $f(1)=g(1)=1$. If f is multiplicative then use induction to show that g is also multiplicative.
(b) Imagine the fractions $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}$. Cancel the common factors and regroup to show that $n=\sum_{d \mid n} \varphi(d)$.
(c) Conclude that φ is multiplicative.
9. Show that for $n \geq 1, D_{n}=\left\lfloor\frac{n!}{e}+\frac{1}{2}\right\rfloor$.
10. Prove combinatorially: $\sum_{i=0}^{n} C(n, i) D_{n-i}=n$!.
11. Show that $\sum_{k=0}^{m}(-1)^{k} C(m, k)(m-k)^{n}= \begin{cases}n! & \text { if } m=n \\ 0 & \text { if } m>n .\end{cases}$
12. Determine the number of 10 -letter words using ENGLISH alphabets that does not contain all the vowels.
13. Determine the number of ways to put
(a) 30 indistinguishable balls into 4 distinguishable boxes with at most 10 balls in each box.
(b) 30 distinguishable balls into 10 distinguishable boxes such that at least 1 box is empty.
(c) r distinguishable balls into n distinguishable boxes such that at least 1 box is empty.
(d) r distinguishable balls into n distinguishable boxes so that no box is empty.
14. Determine the number of ways to arrange 10 digits $0,1, \ldots, 9$, so that the digit i is never followed immediately by $i+1$.
15. Determine the number of strings of length 15 consisting of the 10 digits, $0,1, \ldots, 9$, so that no string contains all the 10 digits.
16. Determine the number of ways of permuting the 26 letters of the ENGLISH alphabets so that none of the patterns lazy, run, show and pet occurs.
17. Let x be a positive integer less than or equal to 9999999.
(a) Find the number of x 's for which the sum of the digits in x equals 30 .
(b) How many of the solutions obtained in the first part consist of 7 digits?

7.3 Generating functions

This is one of the strongest tools in combinatorics. We start with the definition of formal power series over \mathbb{Q} and develop the theory of generating functions. This is then used to get closed form expressions for some known recurrence relations and are then further used to get some binomial identities.

Definition 7.3.1. 1. [Formal power series] An algebraic expression of the form $f(x)=$ $\sum_{n \geq 0} a_{n} x^{n}$, where $a_{n} \in \mathbb{Q}$ for all $n \geq 0$, is called a formal power series in the indeterminate x over \mathbb{Q}. By $\mathfrak{P}(x)$, we denote the set of all formal power series in x and by $\mathrm{CF}\left[x^{n}, f\right]$, the coefficient of x^{n} in f, e.g., $\mathrm{CF}\left[x^{n}, \sum_{n \geq 0} a_{n} x^{n}\right]=a_{n}$.
2. [Equality of two formal power series] Two elements $f, g \in \mathfrak{P}(x)$ are said to be equal if $\mathrm{CF}\left[x^{n}, f\right]=\mathrm{CF}\left[x^{n}, g\right]$ for all $n \geq 0$.
3. [Sum and Product in $\mathfrak{P}(x)$] Let $f(x)=\sum_{n \geq 0} a_{n} x^{n}, g(x)=\sum_{n \geq 0} b_{n} x^{n} \in \mathfrak{P}(x)$. Then, their
(a) sum/addition is defined by $\mathrm{CF}\left[x^{n}, f+g\right]=\mathrm{CF}\left[x^{n}, f\right]+\mathrm{CF}\left[x^{n}, g\right]$.
(b) product (called the Cauchy product) is defined by $\mathrm{CF}\left[x^{n}, f \cdot g\right]=c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Before proceeding further, we consider the following examples.
Example 7.3.2. 1. How many words of size 8 can be formed with 6 copies of A and 6 copies of B ?
Ans: $\sum_{k=2}^{6} C(8, k)$, as we just need to choose k places for A, where $2 \leq k \leq 6$.
Alternate. In any such word, we need m many A 's and n many B 's with $m+n=8$, $m \leq 6$ and $n \leq 6$. Also, the number of words with m many A 's and n many B 's is $\frac{8!}{m!n!}$. We identify this number with $\frac{8!x^{m} y^{n}}{m!n!}$ and note that this is a term of degree 8 in

$$
8!\left[1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}\right]\left[1+y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+\frac{y^{5}}{5!}+\frac{y^{6}}{6!}\right] .
$$

If we replace y by x, then our answer is

$$
\begin{array}{cc}
& 8!\mathrm{CF}\left[x^{8},\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}\right)\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}\right)\right] \\
= & 8!\mathrm{CF}\left[x^{8},\left(\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}\right)\left(\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}\right)\right] \\
= & 8!\mathrm{CF}\left[x^{8},\left(\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)\left(\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)\right] \\
= & 8!\mathrm{CF}\left[x^{8},\left(e^{x}-1-x\right)^{2}=e^{2 x}+1+x^{2}-2 x e^{x}-2 e^{x}+2 x\right]=8!\left(\frac{2^{8}}{8!}-\frac{2}{7!}-\frac{2}{8!}\right)=238 .
\end{array}
$$

2. How many anagrams are there of the word MISSISSIPPI?

Ans: Using basic counting, the answer is $\frac{11!}{4!4!2!}$. For another understanding, the readers should also note that

$$
\begin{aligned}
\frac{11!}{4!4!2!} & =11!\mathrm{CF}\left[x^{11},(1+x)\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}\right)^{2}\left(1+x+\frac{x^{2}}{2!}\right)\right] \\
& =11!\mathrm{CF}\left[x^{11},\left(x+\frac{x^{2}}{2!}+\cdots\right)\left(\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots\right)^{2}\left(\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)\right]
\end{aligned}
$$

as we need to have $x, \frac{x^{4}}{4!}, \frac{x^{4}}{4!}$ and $\frac{x^{2}}{2!}$ for the alphabets M, I, S and P, respectively.
3. Prove that the number of nonnegative integer solutions of $u+v+w+t=10$ equals $\operatorname{CF}\left[x^{10},\left(1+x+x^{2}+\cdots\right)^{4}\right]$.
Ans: Note that u can take any value from 0 to 10 which corresponds to $1+x+\cdots+x^{10}$. Hence, using Theorem 6.6.1, the required answer is

$$
\mathrm{CF}\left[x^{10}, f=\left(1+x+x^{2}+\cdots\right)^{4}=(1-x)^{-4}\right]=C(13,10)=\frac{4 \cdot 5 \cdots 13}{10!} .
$$

Definition 7.3.3. [Generating functions] Let $\left(b_{r}\right)_{0}^{\infty}$ be a sequence of integers. Then, the

1. ordinary generating function (ogf) is the formal power series

$$
b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots, \text { and }
$$

2. exponential generating function (egf) is the formal power series

$$
b_{0}+b_{1} x+b_{2} \frac{x^{2}}{2!}+b_{3} \frac{x^{3}}{3!}+\cdots .
$$

If there exists an $M \in \mathbb{N}$ such that $b_{r}=0$ for all $r \geq M$, then the generating functions have finitely many terms.

Example 7.3.4. What is the number of nonnegative integer solutions of $2 a+3 b+5 c=r$, $r \in \mathbb{N}_{0}$?
Ans: Note that $a \in \mathbb{N}_{0}$ and hence $2 a$ corresponds to the formal power series $1+x^{2}+x^{4}+\cdots$. Thus, we need to consider the ogf

$$
\left(1+x^{2}+x^{4}+\cdots\right)\left(1+x^{3}+x^{6}+\cdots\right)\left(1+x^{5}+x^{10}+\cdots\right)=\frac{1}{\left(1-x^{2}\right)\left(1-x^{3}\right)\left(1-x^{5}\right)} .
$$

Hence, the required answer is $\mathrm{CF}\left[x^{r}, \frac{1}{\left(1-x^{2}\right)\left(1-x^{3}\right)\left(1-x^{5}\right)}\right]$.
Remark 7.3.5. 1. Let $f(x)=\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}, g(x)=\sum_{n \geq 0} b_{n} \frac{x^{n}}{n!} \in \mathfrak{P}(x)$. Then, in case of egf, their product equals $\sum_{n \geq 0} d_{n} \frac{x^{n}}{n!}$, where $d_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}$, for $n \geq 0$.
2. Note that $e^{e^{x}-1} \in \mathfrak{P}(x)$ as $e^{y}=\sum_{n \geq 0} \frac{y^{n}}{n!}$ implies that $e^{e^{x}-1}=\sum_{n \geq 0} \frac{\left(e^{x}-1\right)^{n}}{n!}$ and

$$
\begin{equation*}
\mathrm{CF}\left[x^{m}, e^{e^{x}-1}\right]=\mathrm{CF}\left[x^{m}, \sum_{n \geq 0} \frac{\left(e^{x}-1\right)^{n}}{n!}\right]=\sum_{n=0}^{m} \mathrm{CF}\left[x^{m}, \frac{\left(e^{x}-1\right)^{n}}{n!}\right] . \tag{7.2}
\end{equation*}
$$

That is, for each $m \geq 0, \mathrm{CF}\left[x^{m}, e^{e^{x}-1}\right]$ is a sum of a finite number of rational numbers. Whereas, the expression $e^{e^{x}} \notin \mathfrak{P}(x)$ requires infinitely many computation for $\mathrm{CF}\left[x^{m}, e^{e^{x}}\right]$, for all $m \geq 0$.

With the algebraic operations as defined in Definition 1.3, it can be checked that $\mathfrak{P}(x)$ forms a Commutative Ring with identity, where the identity element is given by the formal power series $f(x)=1$. In this ring, the element $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ is said to have a reciprocal if there exists another element $g(x)=\sum_{n \geq 0} b_{n} x^{n} \in \mathfrak{P}(x)$ such that $f(x) \cdot g(x)=1$. So, the question arises, under what conditions on $\mathrm{CF}\left[x^{n}, f\right]$, can we find $g(x) \in \mathfrak{P}(x)$ such that $f(x) g(x)=1$. The answer to this question is given in the following proposition.

Proposition 7.3.6. The reciprocal of $f \in \mathfrak{P}(x)$ exists if and only if $\mathrm{CF}\left[x^{0}, f\right] \neq 0$.
Proof. Let $g(x)=\sum_{n \geq 0} b_{n} x^{n} \in \mathfrak{P}(x)$ be the reciprocal of $f(x)=\sum_{n \geq 0} a_{n} x^{n}$. Then, $f(x) g(x)=1$ if and only if $\mathrm{CF}\left[x^{0}, f \cdot g\right]=1$ and $\mathrm{CF}\left[x^{n}, f \cdot g\right]=0$, for all $n \geq 1$.
But, by definition of the Cauchy product, $\mathrm{CF}\left[x^{0}, f \cdot g\right]=a_{0} b_{0}$. Hence, if $a_{0}=\operatorname{CF}\left[x^{0}, f\right]=0$ then $\mathrm{CF}\left[x^{0}, f \cdot g\right]=0$ and thus, f cannot have a reciprocal. However, if $a_{0} \neq 0$, then the coefficients $\mathrm{CF}\left[x^{n}, g\right]=b_{n}$'s can be recursively obtained as follows:
$b_{0}=\frac{1}{a_{0}}$ as $1=c_{0}=a_{0} b_{0} ; \quad b_{1}=\frac{-1}{a_{0}} \cdot\left(a_{1} b_{0}\right)$ as $0=c_{1}=a_{0} b_{1}+a_{1} b_{0} ; \quad b_{2}=\frac{-1}{a_{0}} \cdot\left(a_{2} b_{0}+a_{1} b_{1}\right)$ as $0=c_{2}=a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}$; and in general, if we have computed b_{k}, for $k \leq r$, then using $0=c_{r+1}=a_{r+1} b_{0}+a_{r} b_{1}+\cdots+a_{1} b_{r}+a_{0} b_{r+1}, \quad b_{r+1}=\frac{-1}{a_{0}} \cdot\left(a_{r+1} b_{0}+a_{r} b_{1}+\cdots+a_{1} b_{r}\right)$. Hence, the required result follows.
Note that, in Proposition 7.3.6, $b_{n} \in \mathbb{Q}$ as $a_{0} \in \mathbb{Q}$. We now look at the composition of formal power series. Recall that, if $f(x)=\sum_{n \geq 0} a_{n} x^{n}, g(x)=\sum_{n \geq 0} b_{n} x^{n} \in \mathfrak{P}(x)$ then the composition

$$
(f \circ g)(x)=f(g(x))=\sum_{n \geq 0} a_{n}(g(x))^{n}=\sum_{n \geq 0} a_{n}\left(\sum_{m \geq 0} b_{m} x^{m}\right)^{n}
$$

may not be defined (just to compute the constant term of the composition, one may have to look at an infinite sum of rational numbers). For example, let $f(x)=e^{x}$ and $g(x)=x+1$. Note that $g(0)=1 \neq 0$. Here, $(f \circ g)(x)=f(g(x))=f(x+1)=e^{x+1}$. So, as function $f \circ g$ is well defined, but there is no formal procedure to write e^{x+1} as $\sum_{k \geq 0} a_{k} x^{k} \in \mathfrak{P}(x)$ (i.e., with $\left.a_{k} \in \mathbb{Q}\right)$ and hence e^{x+1} is not a formal power series over \mathbb{Q}. The next result gives the condition under which the composition $(f \circ g)(x)$ is well defined.

Proposition 7.3.7. Let $f, g \in \mathfrak{P}(x)$. Then, the composition $(f \circ g)(x) \in \mathfrak{P}(x)$ if either f is a polynomial or $\mathrm{CF}\left[x^{0}, g(x)\right]=0$. Moreover, if $\mathrm{CF}\left[x^{0}, f(x)\right]=0$, then there exists $g \in \mathfrak{P}(x)$, with $\mathrm{CF}\left[x^{0}, g(x)\right]=0$, such that $(f \circ g)(x)=x$. Furthermore, $(g \circ f)(x) \in \mathfrak{P}(x)$ and $(g \circ f)(x)=x$.

Proof. As $(f \circ g)(x) \in \mathfrak{P}(x)$, let $(f \circ g)(x)=f(g(x))=\sum_{n \geq 0} c_{n} x^{n}$ and suppose that either f is a polynomial or $\mathrm{CF}\left[x^{0}, g(x)\right]=0$. Then, to compute $c_{k}=\operatorname{CF}\left[x^{k},(f \circ g)(x)\right]$, for $k \geq 0$, one just needs to consider the terms $\sum_{n=0}^{k} a_{k}(g(x))^{n}$, whenever $f(x)=\sum_{n \geq 0} a_{n} x^{n}$. Hence, each $c_{k} \in \mathbb{Q}$ and
thus, $(f \circ g)(x) \in \mathfrak{P}(x)$. This completes the proof of the first part. We leave the proof of the other part for the reader.

Proposition 7.3.8. [Basic tricks] Recall the following statements from Binomial theorem and Theorem 6.6.1.

1. $\mathrm{CF}\left[x^{n},(1-x)^{-r}=\left(1+x+x^{2}+\cdots\right)^{r}\right]=C(n+r-1, n)$.
2. $\left(1-x^{m}\right)^{n}=1-C(n, 1) x^{m}+C(n, 2) x^{2 m}-\cdots+(-1)^{n} x^{n m}$.
3. $\left(1+x+x^{2}+\cdots+x^{m-1}\right)^{n}=\left(\frac{1-x^{m}}{1-x}\right)^{n}=\left(1-x^{m}\right)^{n}\left(1+x+x^{2}+\cdots\right)^{n}$.

We now define the formal differentiation in $\mathfrak{P}(x)$ and give some important results. The proof is left for the reader.

Definition 7.3.9. [Differentiation] Let $f(x)=\sum_{n \geq 0} a_{n} x^{n} \in \mathfrak{P}(x)$. Then, the formal differentiation of $f(x)$, denoted $f^{\prime}(x)$, is defined by

$$
f^{\prime}(x)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}+\cdots=\sum_{n \geq 1} n a_{n} x^{n-1} .
$$

Proposition 7.3.10. [ogf: tricks] Let $g(x), h(x)$ be the ogf's for the sequences $\left(a_{r}\right)_{0}^{\infty},\left(b_{r}\right)_{0}^{\infty}$, respectively. Then, the following are true.

1. $A g(x)+B h(x)$ is the ogf for $\left(A a_{r}+B b_{r}\right)_{0}^{\infty}$.
2. $(1-x) g(x)$ is the ogf for the sequence $a_{0}, a_{1}-a_{0}, a_{2}-a_{1}, \cdots$.
3. $\left(1+x+x^{2}+\cdots\right) g(x)=(1-x)^{-1} g(x)$ is the ogf for $\left(M_{r}\right)_{0}^{\infty}$, where $M_{r}=a_{r}+a_{r-1}+\cdots+a_{0}$.
4. $g(x) h(x)$ is the ogf for $\left(c_{r}\right)_{0}^{\infty}$, where $c_{r}=a_{0} b_{r}+a_{1} b_{r-1}+a_{2} b_{r-2}+\cdots+a_{r} b_{0}$.
5. $x f^{\prime}(x)$ is the ogf for $\left(r a_{r}\right)_{1}^{\infty}$.

Proof. For example, to prove (3), note that if $g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$, then the coefficient of x^{2} in $\left(1+x+x^{2}+\cdots\right)\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)$ is $a_{2}+a_{1}+a_{0}$.
Example 7.3.11. 1. Let $a_{r}=1$ for all $r \geq 0$. Then, the ogf of the sequence $\left(a_{r}\right)_{0}^{\infty}$ equals $1+x+x^{2}+\cdots=(1-x)^{-1}=f(x)$. So, for $r \geq 0$, the ogf for
(a) $a_{r}=r$ is $x f^{\prime}(x)$ and
(b) $a_{r}=r^{2}$ is $x\left(f^{\prime}(x)+x f^{\prime \prime}(x)\right)$.
(c) $a_{r}=3 r+5 r^{2}$ is $3 x f^{\prime}(x)+5\left(x f^{\prime}(x)+x^{2} f^{\prime \prime}(x)\right)=8 x(1-x)^{-2}+10 x^{2}(1-x)^{-3}$.
2. Determine the number of ways to distribute 50 coins among 30 students so that no student gets more than 4 coins equals

$$
\begin{aligned}
\mathrm{CF}\left[x^{50},\left(1+x+x^{2}+x^{3}+x^{4}\right)^{30}\right] & =\mathrm{CF}\left[x^{50},\left(1-x^{5}\right)^{30}(1-x)^{-30}\right] \\
& =C(79,50)-30 C(74,45)+C(30,2) C(69,40)+\cdots \\
& =\sum_{i=0}^{10}(-1)^{i} C(30, i) C(79-5 i, 50-5 i) .
\end{aligned}
$$

3. For $n, r \in \mathbb{N}$, determine the number of solutions to $y_{1}+\cdots+y_{n}=r$ with $y_{i} \in \mathbb{N}_{0}, 1 \leq i \leq n$.

Ans: Recall that this number equals $C(r+n-1, r)$ (see Theorem 6.3.3).
Alternate. We can think of the problem as follows: the above system can be interpreted as coming from the monomial x^{r}, where $r=y_{1}+\cdots+y_{n}$. That is, the problem reduces to finding the coefficients of $x^{y_{k}}$ of a formal power series, for $y_{k} \geq 0$. Now, recall that $\operatorname{CF}\left[y^{x_{k}},(1-y)^{-1}\right]=1$. Hence, the question reduces to computing

$$
\mathrm{CF}\left[x^{r}, \frac{1}{(1-y)(1-y) \cdots(1-y)}\right]=\mathrm{CF}\left[y^{r}, \frac{1}{(1-y)^{n}}\right]=C(r+n-1, r) .
$$

4. Evaluate $\sum_{k=0}^{\infty} \frac{1}{2^{k}} k$. Put $f(x)=(1-x)^{-1}$. Then, the required sum is $\frac{1}{2} f^{\prime}(1 / 2)=2$. Alternately (rearranging terms of an absolutely convergent series) it is

$$
\begin{array}{ll}
\frac{1}{2} & + \\
\frac{1}{4}+\frac{1}{4} & + \\
\frac{1}{8}+\frac{1}{8}+\frac{1}{8} & + \\
\vdots & \\
\hline 1+\frac{1}{2}+\cdots & =2 .
\end{array}
$$

5. Determine a closed form expression for $\sum_{n \geq 0} n x^{n} \in \mathfrak{P}(x)$.

Ans: As $(1-x)^{-1}=\sum_{n \geq 0} x^{n}$, one has $(1-x)^{-2}=\left((1-x)^{-1}\right)^{\prime}=\left(\sum_{n \geq 0} x^{n}\right)^{\prime}=\sum_{n \geq 0} n x^{n-1}$. Thus, the closed form expression is $\frac{x}{(1-x)^{2}}$.
Alternate. Let $S=\sum_{n \geq 0} n x^{n}=x+2 x^{2}+3 x^{3}+\cdots$. Then, $x S=x^{2}+2 x^{3}+3 x^{4}+\cdots$.
Hence, $(1-x) S=\sum_{k \geq 1} x^{k}=x \sum_{k \geq 0} x^{k}=\frac{x}{1-x}$. Thus, $S=\frac{x}{(1-x)^{2}}$.
6. Determine the sum of the first N positive integers.

Ans: Using previous example, note that $k=\mathrm{CF}\left[x^{k-1},\left((1-x)^{-2}\right)\right]$. Therefore, by Proposition 7.3.10, one has $\sum_{k=1}^{N} k=\operatorname{CF}\left[x^{N-1},\left((1-x)^{-1} \cdot(1-x)^{-2}\right]\right)$ and hence

$$
\sum_{k=1}^{N} k=\mathrm{CF}\left[x^{N-1},(1-x)^{-3}\right]=C(N+1, N-1)=\frac{N(N+1)}{2} .
$$

7. Determine the sum of the squares of the first N positive integers.

Ans: Recall $\sum_{n \geq 0} n x^{n}=\frac{x}{(1-x)^{2}}$. Thus, $\sum_{n \geq 0} n^{2} x^{n}=x\left(\sum_{n \geq 0} n x^{n}\right)^{\prime}=x\left(\frac{x}{(1-x)^{2}}\right)^{\prime}=\frac{x(1+x)}{(1-x)^{3}}$. Hence,

$$
\begin{aligned}
\sum_{k=1}^{N} k^{2} & =\mathrm{CF}\left[x^{N}, \frac{1}{1-x} \cdot \frac{x(1+x)}{(1-x)^{3}}\right]=\mathrm{CF}\left[x^{N-1}, \frac{1}{(1-x)^{4}}\right]+\mathrm{CF}\left[x^{N-2}, \frac{1}{(1-x)^{4}}\right] \\
& =C(N+2, N-1)+C(N+1, N-2)=\frac{N(N+1)(2 N+1)}{6}
\end{aligned}
$$

EXERCISE 7.3.12. 1. For $n, r \in \mathbb{N}$, determine the number of solutions to $x_{1}+2 x_{2}+\cdots+n x_{n}=$ r with $x_{i} \in \mathbb{N}_{0}, 1 \leq i \leq n$.
2. Determine $\sum_{k=0}^{\infty} \frac{1}{2^{k}} C(n+k-1, k)$.
3. Find the number of nonnegative integer solutions of $a+b+c+d+e=27$, satisfying
(a) $3 \leq a \leq 8$,
(b) $3 \leq a, b, c, d \leq 8$
(c) c is a multiple of 3 and e is a multiple of 4 .
4. Determine the number of ways in which 100 voters can cast their 100 votes for 10 candidates such that no candidate gets more than 20 votes.
5. Determine a closed form expression for $\sum_{k=1}^{N} k^{3}$.
6. Determine a closed form expression for $\sum_{n \geq 0} \frac{n^{2}+n+6}{n!}$.
7. Verify the following table of formal power series.

Table of Formal Power Series

Definition 7.3.13. [Ferrer's diagram] For $n, k \in \mathbb{N}$, let $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ be a partition of $n \in \mathbb{N}$ into k parts. Then, the Ferrer's Diagram of $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ is a pictorial representation (pattern) using dots in the following way: place n_{1} dots in the first row. The n_{2} dots in the second row are placed in such a way to cover the first n_{2} dots of the first row and so on (see Figure 7.1).
Example 7.3.14. 1. $(1,1,1,1),(2,2),(2,1,1)$ are a few partitions of 4.
2. Ferrer's diagram for $(5,3,3,2,1,1)$ is

Figure 7.1: Ferrer's diagram and it's conjugate
3. Let λ be a partition and μ it's Ferrer's diagram. Then, the diagram μ^{\prime} obtained by interchanging the rows and columns of μ is called the conjugate of λ, denoted λ^{\prime}. Thus, the conjugate of the partition $(5,3,3,2,1,1)$ is $(6,4,3,1,1)$, another partition of 15 .

Definition 7.3.15. [Self conjugate] A partition λ is said to be self conjugate if the Ferrer's diagram of λ and λ^{\prime} is the same.

Example 7.3.16. Find a one-one correspondence between self conjugate partitions and partitions of n into distinct odd terms.

Ans: Let λ be a self conjugate partition with k diagonal dots. For $1 \leq i \leq k$, define $n_{i}=$ number of dots in the i-th 'hook' (dotted lines in Figure 7.1). Conversely, given any partition, say $\left(x_{1}, \ldots, x_{k}\right)$ with odd terms, we can get a self conjugate partition by putting x_{1} dots in the first 'hook', x_{2} dots in the second 'hook' and so on. Since each x_{i} is odd, the hook is symmetric and $x_{i} \leq x_{i-1}+2$ for $2 \leq i \leq k$ implies that the corresponding diagram of dots is indeed a Ferrer's diagram and hence the result follows.

Theorem 7.3.17. [Euler: partition of n] The generating function for π_{n} is
$\varepsilon(x)=\left(1+x+x^{2}+\cdots\right)\left(1+x^{2}+x^{4}+\cdots\right) \cdots\left(1+x^{n}+x^{2 n}+\cdots\right)=\frac{1}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{n}\right)}$.
Proof. Note that any partition λ of n has m_{1} copies of $1, m_{2}$ copies of 2 and so on till m_{n} copies of n, where $m_{i} \in \mathbb{N}_{0}$ for $1 \leq i \leq n$ and $\sum_{i=1}^{n} m_{i}=n$. Hence, λ uniquely corresponds to $\left(x^{1}\right)^{m_{1}}\left(x^{2}\right)^{m_{2}} \cdots\left(x^{n}\right)^{m_{n}}$ in the word-expansion of

$$
\left(1+x+x^{2}+\cdots\right)\left(1+x^{2}+x^{4}+\cdots\right) \cdots\left(1+x^{n}+x^{2 n}+\cdots\right) .
$$

Thus, $\pi_{n}=\mathrm{CF}\left[x^{n}, \varepsilon(x)\right]$.
Example 7.3.18. Let $f(n)$ be the number of partitions of n in which no part is 1 . Then, note that the ogf for $f(n)$ is $(1-x) \varepsilon(x)$. Hence, $f(n)=\pi_{n}-\pi_{n-1}$.

Alternate. Let $\lambda=\left(n_{1}, \ldots, n_{k}\right)$ be a partition of n with $n_{k}=1$. Then, λ gives a partition of $n-1$, namely (n_{1}, \ldots, n_{k-1}). Conversely, if $\mu=\left(t_{1}, \ldots, t_{k}\right)$ is a partition of $n-1$, then $\left(t_{1}, \ldots, t_{k}, 1\right)$ is a partition of n with last part 1 , Hence, the required result follows.

The next result is the same idea as Theorem 7.3.17 and hence the proof is omitted.

Theorem 7.3.19. The number of partitions of n with entries at most r is $\mathrm{CF}\left[x^{n}, \prod_{i=1}^{r} \frac{1}{1-x^{2}}\right]$.
Theorem 7.3.20. [ogf of $\left.\pi_{n}(r)\right]$ Fix $n, r \in \mathbb{N}$. Then, the ogf for $\pi_{n}(r)$, the number of partitions of n into r parts, is $\frac{x^{r}}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{r}\right)}$.

Proof. Let λ be a partition of n into at most r parts. Then, λ^{\prime} corresponds to a partition of n with entries at most r. Now, add a column of dots of height r on the left of the Ferrer's diagram of λ^{\prime}. Then, the new Ferrer's diagram corresponds to a partition of $n+r$ into r parts. Conversely, given a partition of $n+r$ into r parts, the inverse map gives a partition of n into at most r parts. Thus, by Theorem 7.3.19, we get

$$
\pi_{n}(r)=\mathrm{CF}\left[x^{n-r}, \frac{1}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{r}\right)}\right] .
$$

Hence, the ogf for $\pi_{n}(r)$ is $\frac{x^{r}}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{r}\right)}$.
Exercise 7.3.21. 1. For $n, r \in \mathbb{N}$, prove that $\pi_{n}(r)$ is the number of partitions of $n+C(r, 2)$ into r unequal parts.
2. Let $P, M \subseteq \mathbb{N}$ and $f(n)$ be the number of partitions of n where parts are from P and multiplicities are from M. Find the generating function for the numbers $f(n)$.

Theorem 7.3.22. Suppose there are k types of objects.

1. If there is an unlimited supply of each object, then the egf of the number of r-permutations is $e^{k x}$.
2. If there are m_{i} copies of i-th object, then the egf of the number of r-permutations is

$$
\left(1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{m_{1}}}{m_{1}!}\right) \cdots\left(1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{m_{k}}}{m_{k}!}\right) .
$$

3. Moreover, $n!S(r, n)$ is the coefficient of $\frac{x^{r}}{r!}$ in $\left(e^{x}-1\right)^{n}$.

Proof. Part 1: Since there are unlimited supply of each object, the egf for each object corresponds to $e^{x}=1+x+\cdots+\frac{x^{n}}{n!}+\cdots$. Hence, the required result follows.
Part 2: Argument is similar to that of Part 1 and is omitted.
Part 3: Recall that $n!S(r, n)$ is the number of surjections from $[r]$ to $S=\left\{s_{1}, \cdots, s_{n}\right\}$. Each surjection can be viewed as word of length r of elements of S, with each s_{i} appearing at least once. Thus, we need a selection of $k_{i} \in \mathbb{N}$ copies of s_{i}, with $\sum_{i=1}^{n} k_{i}=r$. Also, by Theorem 6.1.26, this number equals $C\left(r ; k_{1}, \cdots, k_{n}\right)$. Hence,

$$
n!S(r, n)=r!\mathrm{CF}\left[x^{r},\left(x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)^{n}\right]=\mathrm{CF}\left[\frac{x^{r}}{r!},\left(e^{x}-1\right)^{n}\right] .
$$

Example 7.3.23. 1. In how many ways can you get Rs 2007 using denominations $1,10,100,1000$ only?
Ans: $\mathrm{CF}\left[x^{2007}, \frac{1}{(1-x)\left(1-x^{10}\right)\left(1-x^{100}\right)\left(1-x^{1000}\right)}\right]$.
2. If we use at most 9 of each denomination in (a), then this number is

$$
\mathrm{CF}\left[x^{2007},\left(\sum_{i=1}^{9} x^{i}\right)\left(\sum_{i=1}^{9} x^{10 i}\right)\left(\sum_{i=1}^{9} x^{100 i}\right)\left(\sum_{i=1}^{9} x^{1000 i}\right)\right]=\mathrm{CF}\left[x^{2007}, \frac{1-x^{10000}}{1-x}\right]=1 .
$$

3. Every natural number has a unique base- r representation $(r \geq 2)$. Note that Item (2) corresponds to the case $r=10$.
4. Consider n integers $k_{1}<k_{2}<\cdots<k_{n}$ with $\operatorname{gcd}\left(k_{1}, \ldots, k_{n}\right)=1$. Then, the number of natural numbers not having a partition using $\left\{k_{1}, \ldots, k_{n}\right\}$ is finite. Since $\operatorname{gcd}\left(k_{1}, \ldots, k_{n}\right)=$ 1 , there exist $\alpha_{i} \in \mathbb{Z}$ such that $\sum \alpha_{i} k_{i}=1$. Let $m=\max \left\{\left|\alpha_{1}\right|, \ldots,\left|\alpha_{n}\right|\right\}, k=\min \left\{k_{i}\right\}$ and $N=k m\left(k_{1}+\cdots+k_{n}\right)$. Notice that $N, N+k, N+2 k, \ldots$ can be represented as $\sum \beta_{i} k_{i}$ where $\beta_{i} \geq k m$. For $1 \leq r<k$, we have $N+r=k m\left(k_{1}+\cdots+k_{n}\right)+r \sum \alpha_{i} k_{i}=\sum\left(k m-r \alpha_{i}\right) k_{i}$. Thus, each integer greater than N can be represented using k_{1}, \ldots, k_{n}. Determining the largest such integer (Frobenius number) is the coin problem/ money changing problem. The general problem is NP-hard. No closed form formula is known for $n>3$.

Notice!

Some times we have a way to obtain a recurrence relation from the generating function. This is important and hence study the next example carefully.

Example 7.3.24. 1. Suppose $F=\frac{1}{(1-x)\left(1-x^{10}\right)\left(1-x^{100}\right)\left(1-x^{1000}\right)}=a_{0}+a_{1} x+\cdots+$ $a_{n} x^{n}+\cdots$. Then, taking \log and differentiating, we get

$$
F^{\prime}=F\left[\frac{1}{1-x}+\frac{10 x^{9}}{1-x^{10}}+\frac{100 x^{99}}{1-x^{100}}+\frac{1000 x^{999}}{1-x^{1000}}\right] .
$$

So,
$n a_{n}=\mathrm{CF}\left[x^{n-1}, F^{\prime}\right]=\mathrm{CF}\left[x^{n-1}, F\left[\frac{1}{1-x}+\frac{10 x^{9}}{1-x^{10}}+\frac{100 x^{99}}{1-x^{100}}+\frac{1000 x^{999}}{1-x^{1000}}\right]\right]=\sum_{k=1}^{n} a_{n-k} b_{k}$,
where
$b_{k}=\mathrm{CF}\left[x^{k-1},\left[\frac{1}{1-x}+\frac{10 x^{9}}{1-x^{10}}+\frac{100 x^{99}}{1-x^{100}}+\frac{1000 x^{999}}{1-x^{1000}}\right]\right]= \begin{cases}1 & \text { if } 10 \nmid k \\ 11 & \text { if } 10 \mid k, 100 \nmid k \\ 111 & \text { if } 10|k, 100| k, 1000 \nmid k \\ 1111 & \text { else. }\end{cases}$
2. We know that $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k}=\infty$. What about $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{p_{k}}$, where p_{k} is the k-th prime?

Ans: For $n>1$, let $s_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Then, note that

$$
s_{n} \leq\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right)\left(1+\frac{1}{3}+\frac{1}{9}+\cdots\right) \cdots\left(1+\frac{1}{p_{n}}+\frac{1}{p_{n}^{2}}+\cdots\right)=\prod_{k=1}^{n}\left(1+\frac{1}{p_{k}-1}\right) .
$$

Thus,

$$
\log s_{n} \leq \log \left(\prod_{k=1}^{n}\left(1+\frac{1}{p_{k}-1}\right)\right) \leq \sum_{k=1}^{n} \log \left(1+\frac{1}{p_{k}-1}\right) \leq \sum_{k=1}^{n} \frac{1}{p_{k}-1} \leq 1+\sum_{k=1}^{n-1} \frac{1}{p_{k}}
$$

As $s_{n} \rightarrow \infty$, we see that $\lim _{n \rightarrow \infty} \sum_{i}^{n} \frac{1}{p_{i}}=\infty$ as $\lim _{n \rightarrow \infty} \log s_{n}=\infty$.
3. Let S be the set of natural numbers with only prime divisors $2,3,5,7$. Then,

$$
1+\sum_{n \in S} \frac{1}{n}=\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right)\left(1+\frac{1}{3}+\frac{1}{9}+\cdots\right) \cdots\left(1+\frac{1}{7}+\frac{1}{49}+\cdots\right)=\frac{2}{1} \frac{3}{2} \frac{5}{4} \frac{7}{6} .
$$

EXERCISE 7.3.25. 1. Let $\sigma(n)=\sum_{d \mid n} d$, for $n \in \mathbb{N}$. Then, prove that $n \pi_{n}=\sum_{k=1}^{n} \pi_{n-k} \sigma(k)$.
2. A Durfee square is the largest square in a Ferrer's diagram. Find the generating function for the number of self conjugate partitions of n with a fixed size k of Durfee square. Hence, show that $(1+x)\left(1+x^{3}\right) \cdots=1+\sum_{k=1}^{\infty} \frac{x^{k^{2}}}{\left(1-x^{2}\right)\left(1-x^{4}\right) \cdots\left(1-x^{2 k}\right)}$.
3. Show that the number of partitions of n into distinct terms (each term is distinct) is the same as the number of partitions of n into odd terms (each term is odd).
4. Find the number of r-digit binary numbers that can be formed using an even number of 0 's and an even number of 1's.
5. Find the egf of the number of words of size r using A, B, C, D, E, if the word has
(a) all the letters and the letter A appears an even many times.
(b) all the letters and the first letter of the word appears an even number of times.
6. A permutation σ of $[n]$ is said to be connected if there does not exist $k, 1 \leq k<n$ such that σ takes $[k]$ to itself. Let c_{n} denote the number of connected permutations of $[n]$ (put $c_{0}=0$), then show that

$$
\sum_{k=1}^{n} c_{k}(n-k)!=n!.
$$

Hence, derive the relationship between the generating functions of ($n!$) and $\left(c_{n}\right)$.
7. Let $f(n, r)$ be the number of partitions of n where each part repeats less than r times. Let $g(n, r)$ be the number of partition of n where no part is divisible by r. Show that $f(n, r)=g(n, r)$.
8. Find the number of 9-sequences that can be formed using $0,1,2,3$ in each case.
(a) The sequence has an even number of 0 's.
(b) The sequence has an odd number of 1's and an even number of 0 's.
(c) No digit appears exactly twice.

7.4 Recurrence relation

Definition 7.4.1. [Recurrence relation] A recurrence relation is a way of recursively defining the terms of a sequence as a function of preceding terms together with certain initial conditions.

Example 7.4.2. $a_{n}=3+2 a_{n-1}$ for $n \geq 1$ with the initial condition $a_{0}=1$ is a recurrence relation. Note that it completely determines the sequence $\left(a_{n}\right)=\{1,5,13,29,61, \ldots\}$.

Definition 7.4.3. [Difference equation] For a sequence $\left(a_{n}\right)$, the first difference $d\left(a_{n}\right)$ is $a_{n}-a_{n-1}$. The \boldsymbol{k}-th difference $d^{k}\left(a_{n}\right)=d^{k-1}\left(a_{n}\right)-d^{k-1}\left(a_{n-1}\right)$. A difference equation is an equation involving a_{n} and its differences.
Example 7.4.4. 1. $a_{n}-d^{2}\left(a_{n}\right)=5$ is a difference equation. But, note that it doesn't give a recurrence relation as we don't have any initial condition(s).
2. Every recurrence relation can be expressed as a difference equation. The difference equation corresponding to the recurrence relation $a_{n}=3+2 a_{n-1}$ is $a_{n}=3+2\left(a_{n}-d\left(a_{n}\right)\right)$.

Definition 7.4.5. [Solution] A solution of a recurrence relation is a function $f(n)$ satisfying the recurrence relation.

Example 7.4.6. 1. $f(n)=2^{n+2}-3$ is a solution of $a_{n}=3+2 a_{n-1}$ with $a_{0}=1$.
2. The Fibonacci sequence is given by $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 2$ with $a_{0}=1, a_{1}=1$.

Definition 7.4.7. [LNHRRCC/LHRRCC] A recurrence relation is a linear nonhomogeneous recurrence relation with constant coefficients (LNHRRCC) of order r if, for a known function f

$$
\begin{equation*}
a_{n}=c_{1} a_{n-1}+\cdots+c_{r} a_{n-r}+f(n), \text { where } c_{i} \in \mathbb{R} \text { for } 1 \leq i \leq r, c_{r} \neq 0 . \tag{7.3}
\end{equation*}
$$

If $f=0$, then Equation (7.3) is homogeneous and is called the associated linear homogeneous recurrence relation with constant coefficients (LHRRCC).

Theorem 7.4.8. For $k \in \mathbb{N}$, let $f_{i}, 1 \leq i \leq k$ be known functions. Consider the k LNHRRCC

$$
\begin{equation*}
a_{n}=c_{1} a_{n-1}+\cdots+c_{r} a_{n-r}+f_{i}(n) \text { for } i=1, \ldots, k, \tag{7.4}
\end{equation*}
$$

with the same set of initial conditions. If g_{i} is a solution of the i-th recurrence then,

$$
\begin{equation*}
a_{n}=c_{1} a_{n-1}+\cdots+c_{r} a_{n-r}+\sum_{i=1}^{k} \alpha_{i} f_{i}(n) \tag{7.5}
\end{equation*}
$$

under the same set of initial conditions has $\sum_{i=1}^{k} \alpha_{i} g_{i}(n)$ as it's solution.
Proof. The proof is left as an exercise for the reader.
Definition 7.4.9. [Characteristic equation] Consider a LHRRCC $a_{n}=c_{1} a_{n-1}+\cdots+c_{r} a_{n-r}$ with $c_{r} \neq 0$. If $a_{n}=x^{n}$ is a solution, then either $x=0$ or x is a root of

$$
\begin{equation*}
x^{r}-c_{1} x^{r-1}-\cdots-c_{r}=0 . \tag{7.6}
\end{equation*}
$$

Equation (7.6) is called the characteristic equation of the given LHRRCC. If x_{1}, \ldots, x_{r} are the roots of Equation (7.6), then $a_{n}=x_{i}^{n}$ (and hence $a_{n}=\sum_{i=1}^{r} \alpha_{i} x_{i}^{n}$ for $\alpha_{i} \in \mathbb{R}$) is a solution of the given LHRRCC.

Theorem 7.4.10. [General solution: distinct roots] If the roots $x_{i}, i=0, \ldots, r-1$ of Equation (7.6) are distinct, then every solution $h(n)$ is a linear combination of x_{i}^{n}. Moreover, the solution is unique if we are given r consecutive initial conditions.

Proof. Let $h(n)$ be any solution. Then, note that there exists $\alpha_{0}, \ldots, \alpha_{r-1}$, such that

$$
\left[\begin{array}{c}
h(0) \\
\vdots \\
h(r-1)
\end{array}\right]=\left[\begin{array}{ccc}
1 & \cdots & 1 \\
x_{0} & \cdots & x_{r-1} \\
& \ddots & \\
x_{0}^{r-1} & \cdots & x_{r-1}^{r-1}
\end{array}\right]\left[\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{r-1}
\end{array}\right]
$$

as the $r \times r$ matrix is an invertible matrix. That is, for every $\alpha_{i} \in \mathbb{R}, h(n)=\sum_{i=0}^{r-1} \alpha_{i} x_{i}^{n}, 0 \leq n \leq$ $r-1$. Hence, we have proved the result for the first r values of $h(n)$. So, let us assume that the result is true for $n<k$. Then, by definition

$$
h(k)=\sum_{j=1}^{r} c_{j} h(k-j)=\sum_{j=1}^{r} c_{j} \sum_{i=0}^{r-1} \alpha_{i} x_{i}^{k-j}=\sum_{i=0}^{r-1} \alpha_{i} \sum_{j=1}^{r} c_{j} x_{i}^{k-j}=\sum_{i=0}^{r-1} \alpha_{i} x_{i}^{k},
$$

as for $n=k, x_{i}^{k}$ is a solution of Equation (7.6). Thus, by PMI, $h(n)=\sum_{i=0}^{r-1} \alpha_{i} x_{i}^{n}$ for all n. The uniqueness is left as an exercise for the reader.
Example 7.4.11. 1. Solve $a_{n}-4 a_{n-2}=0$ for $n \geq 2$ with $a_{0}=1$ and $a_{1}=1$.
Ans: Note that ± 2 are the roots of the characteristic equation, $x^{2}-4=0$. As the roots are distinct, the general solution is $a_{n}=\alpha(-2)^{n}+\beta 2^{n}$ for $\alpha, \beta \in \mathbb{R}$. The initial conditions give $\alpha+\beta=1$ and $2 \beta-2 \alpha=1$. Hence, $\alpha=\frac{1}{4}, \beta=\frac{3}{4}$. Thus, the unique solutions is $a_{n}=2^{n-2}\left(3+(-1)^{n}\right)$.
2. Solve $a_{n}=3 a_{n-1}+4 a_{n-2}$ for $n \geq 2$ with $a_{0}=1$ and $a_{1}=c$, a constant.

Ans: Note that -1 and 4 are the roots of the characteristic equation, $x^{2}-3 x-4=0$. As the roots are distinct, the general solution is $a_{n}=\alpha(-1)^{n}+\beta 4^{n}$ for $\alpha, \beta \in \mathbb{R}$. Now, the initial conditions imply $\alpha=\frac{4-c}{5}$ and $\beta=\frac{1+c}{5}$. Thus, the unique general solution is
(a) $a_{n}=\frac{(4-c)(-1)^{n}}{5}+\frac{(1+c) 4^{n}}{5}$, if $c \neq 4$.
(b) $a_{n}=4^{n}$, if $c=4$.
3. Solve the Fibonacci recurrence $a_{n}=a_{n-1}+a_{n-2}$ with initial conditions $a_{0}=a_{1}=1$.

Ans: In this case, note that the roots of the characteristic equation, $x^{2}-x-1=0$, are $\frac{1 \pm \sqrt{5}}{2}$. As the roots are distinct, the general solution is $a_{n}=\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}$ for $\alpha, \beta \in \mathbb{R}$. Now, using the initial conditions, we get $\alpha=\frac{5+\sqrt{5}}{10}, \beta=\frac{5-\sqrt{5}}{10}$. Hence, the required solution is

$$
a_{n}=\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right]
$$

Theorem 7.4.12. [General solution: multiple roots] Let t is a root of Equation (7.6) of multiplicity s. Then, $u(n)=t^{n}\left(\alpha_{1}+n \alpha_{2}+\cdots+n^{s-1} \alpha_{s}\right)$ is a solution (basic solution). In general, if t_{i} is a root of Equation (7.6) with multiplicity s_{i}), for $i=1, \ldots, k$, then every solution is a sum of the k basic solutions.

Proof. It is given that t is a zero of the polynomial $F=x^{r}-c_{1} x^{r-1}-\cdots-c_{r}$ of multiplicity s. Put $G_{0}=x^{n-r} F=x^{n}-c_{1} x^{n-1}-\cdots-c_{r} x^{n-r}$ and $G_{1}=x G_{0}^{\prime}, G_{2}=x G_{1}^{\prime}, \ldots, G_{s-1}=x G_{s-2}^{\prime}$. Then, each of $G_{0}, G_{1}, \ldots, G_{s-1}$ has a zero at t. That is, for $i=0,1, \ldots, s-1$, we have

$$
G_{i}(t)=t^{n} n^{i}-c_{1} t^{n-1}(n-1)^{i}-\ldots-c_{r} t^{n-r}(n-r)^{i}=0 .
$$

Now, take $u(n)=t^{n} P(n)$, where $P(n)=\sum_{i=0}^{s-1} n^{i} \alpha_{i}$ is a fixed polynomial, with $\alpha_{i} \in \mathbb{R}$ for $0 \leq i \leq s-1$. Then,

$$
\sum_{i=0}^{s-1} \alpha_{i} G_{i}(t)=t^{n} P(n)-c_{1} t^{n-1} P(n-1)-\cdots-c_{r} t^{n-r} P(n-r)=0
$$

Hence, for $0 \leq i \leq s-1$ and $\alpha_{i} \in \mathbb{R}, u(n)$ is a solution of the LHRRCC. The other part of the proof is left for the reader.

Example 7.4.13. Suppose that a LHRRCC has roots $2,2,3,3,3$. Then, the general solution is given by $2^{n}\left(\alpha_{1}+n \alpha_{2}\right)+3^{n}\left(\beta_{1}+n \beta_{2}+n^{2} \beta_{3}\right)$.

Theorem 7.4.14. [LNHRRCC] Consider the LNHRRCC in Equation (7.3) and let u_{n} be a general solution to the associated LHRRCC. If v_{n} is a particular solution of the LNHRRCC, then $a_{n}=u_{n}+v_{n}$ is a general solution of the LNHRRCC.

Proof. The proof is left for the reader.
Notice!
No general algorithm are there to solve a LNHRRCC. If $f(n)=a^{n}$ or n^{k} or a linear combination of these, then a particular solution can be obtained easily.

Obtaining particular solution after knowledge of the characteristic roots.

1. If $f(n)=a^{n}$ and a is not a root of Equation (7.3), then $v_{n}=c a^{n}$.
2. If $f(n)=a^{n}$ and a is a root of Equation (7.3) of multiplicity t, then $v_{n}=c n^{t} a^{n}$.
3. If $f(n)=n^{k}$ and 1 is not a root of Equation (7.3), then use $v_{n}=c_{0}+c_{1} n+\cdots+c_{k} n^{k}$.
4. If $f(n)=n^{k}$ and 1 is a root of Equation (7.3) of multiplicity t, then $v_{n}=n^{t}\left(c_{0}+\right.$ $\left.c_{1} n+\cdots+c_{k} n^{k}\right)$.
Example 7.4.15. 1. Let $a_{n}=3 a_{n-1}+2 n$ for $n \geq 1$ with $a_{0}=1$.
Ans: Observe that 3 is the characteristic root of the associated LHRRCC ($a_{n}=3 a_{n-1}$). Thus, the general solution of LHRRCC is $u_{n}=3^{n} \alpha$. Note that 1 is not a characteristic
root and hence a particular solution is $a+n b$, where a and b are to be computed using $a+n b=3(a+(n-1) b)+2 n$. This gives $a=\frac{-3}{2}$ and $b=-1$. Hence, $a_{n}=3^{n} \alpha-n-\frac{3}{2}$. Using $a_{0}=1$, check that $\alpha=\frac{5}{2}$.
5. Let $a_{n}=3 a_{n-1}-2 a_{n-2}+3(5)^{n}$ for $n \geq 3$ with $a_{1}=1, a_{2}=2$.

Ans: Observe that 1 and 2 are the characteristic roots of the associated LHRRCC ($a_{n}=$ $3 a_{n-1}-2 a_{n-2}$). Thus, the general solution of the LHRRCC is $u_{n}=\alpha 1^{n}+\beta 2^{n}$. Note that 5 is not a characteristic root and thus, $v_{n}=c 5^{n}$ is a particular solution of LNHRRCC if and only if $c 5^{n}=3 c 5^{n-1}-2 c 5^{n-2}+3(5)^{n}$. That is, if and only if $c=25 / 4$. Hence, the general solution of LNHRRCC equals $a_{n}=\alpha+\beta 2^{n}+(25 / 4) 5^{n}$, where compute α and β using the initial conditions.
3. In the above take $f(n)=3\left(2^{n}\right)$. Then, we see that with $c(2)^{n}$ as a choice for a particular solution, we will have $4 c=6 c-2 c+12$, an absurd statement. But, with the choice $c n(2)^{n}$, we have $4 n c=6(n-1) c-2(n-2) c+12$, implying $c=6$. Hence, the general solution of LNHRRCC is $a_{n}=\alpha+\beta 2^{n}+6 n 2^{n}$, where compute α and β using the initial conditions.

7.5 Generating function from recurrence relation

Sometimes we can find a solution to the recurrence relation using the generating function of a_{n}.
Example 7.5.1. 1. Consider $a_{n}=2 a_{n-1}+1, a_{0}=1$.
Ans: Let $F(x)=a_{0}+a_{1} x+\cdots$ be the generating function for $\left\{a_{i}\right\}$. Then,

$$
F=1+\sum_{i=1}^{\infty} a_{i} x^{i}=1+\sum_{i=1}^{\infty}\left(2 a_{i-1}+1\right) x^{i}=\sum_{i=0}^{\infty} x^{i}+2 x \sum_{i=0}^{\infty} a_{i} x^{i}=\frac{1}{1-x}+2 x F .
$$

Hence, $F=\frac{1}{(1-x)(1-2 x)}=\frac{2}{1-2 x}-\frac{1}{1-x}$. Thus, $a_{n}=\mathrm{CF}\left[x^{n}, F\right]=2^{n+1}-1$.
2. Find the ogf F for the Fibonacci recurrence relation $a_{n}=a_{n-1}+a_{n-2}, a_{0}=0, a_{1}=1$.

Ans: We have
$F=\sum_{i=0}^{\infty} a_{i} x^{i}=x+\sum_{i=2}^{\infty} a_{i-2} x^{i}+\sum_{i=2}^{\infty} a_{i-1} x^{i}=x+x^{2} \sum_{i=0}^{\infty} a_{i} x^{i}+x \sum_{i=1}^{\infty} a_{i} x^{i}=x+\left(x^{2}+x\right) F$.
Thus, $F=\frac{x}{1-x-x^{2}}=\frac{-x}{(x-\alpha)(x-\beta)}$, where $\alpha=\frac{-1+\sqrt{5}}{2}, \beta=\frac{-1-\sqrt{5}}{2}$. So,

$$
F=\frac{-x}{(x-\alpha)(x-\beta)}=\frac{-1}{\sqrt{5}}\left[\frac{\alpha}{x-\alpha}-\frac{\beta}{x-\beta}\right]=\frac{1}{\sqrt{5}} \sum_{i=0}^{\infty}\left[\frac{x^{i}}{\alpha^{i}}-\frac{x^{i}}{\beta^{i}}\right] .
$$

Hence, using $\alpha \cdot \beta=-1, a_{n}=\operatorname{CF}\left[x^{n}, F\right]=\frac{(-1)^{n}}{\sqrt{5}}\left(\beta^{n}-\alpha^{n}\right)=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}$.
The next result follows using a small calculation and hence the proof is left for the reader.

Theorem 7.5.2. [Obtaining generating function from recurrence relation] The generating function of the r-th order LHRRCC $a_{n}=c_{1} a_{n-1}+\cdots+c_{r} a_{n-r}$ with initial conditions $a_{i}=A_{i}$, $i=0,1, \ldots, r-1$ is

$$
\frac{\sum_{i=0}^{r-1} A_{i} x^{i}-c_{1} x \sum_{i=0}^{r-2} A_{i} x^{i}-c_{2} x^{2} \sum_{i=0}^{r-3} A_{i} x^{i}-\cdots-c_{r-1} x^{r-1} A_{0}}{1-c_{1} x-\cdots-c_{r} x^{r}} .
$$

Example 7.5.3. 1. Find the ogf for the Catalan numbers C_{n} 's.
Ans: Let $g(x)=1+\sum_{n \geq 1} C_{n} x^{n}$, where $C_{n}=\frac{C(2 n, n)}{n+1}$ with $C_{0}=1$. Then,

$$
\begin{aligned}
g(x)-1 & =\sum_{n \geq 1} C_{n} x^{n}=\sum_{n \geq 1} \frac{1}{n+1} \cdot \frac{2 n!}{n!n!} x^{n}=\sum_{n=1}^{\infty} \frac{2(2 n-1)}{n+1} C_{n-1} x^{n} \\
& =\sum_{n=1}^{\infty} \frac{4 n+4}{n+1} C_{n-1} x^{n}+\sum_{n=1}^{\infty} \frac{-6}{n+1} C_{n-1} x^{n}=4 x g(x)+\frac{-6}{x} \int_{0}^{x} t g(t) d t .
\end{aligned}
$$

So, $[g(x)-1-4 x g(x)] x=-6 \int_{0}^{x} t g(t) d t$. Now, we differentiate with respect to x to get $g^{\prime} x(1-4 x)+g(1-2 x)=1$. To solve the ode, we first observe that

$$
\int \frac{1-2 x}{x(1-4 x)}=\int\left[\frac{1}{x}+\frac{2}{1-4 x}\right]=\ln \left(\frac{x}{\sqrt{1-4 x}}\right) .
$$

Thus, the integrating factor of the given ode is $\frac{x}{\sqrt{1-4 x}}$ and hence the ode can be re-written as

$$
g(x)^{\prime} \frac{x}{\sqrt{1-4 x}}+g(x) \frac{1-2 x}{(1-4 x)^{3 / 2}}=\frac{1}{(1-4 x)^{3 / 2}} \Leftrightarrow \frac{d}{d x}\left[g(x) \frac{x}{\sqrt{1-4 x}}\right]=\frac{1}{(1-4 x)^{3 / 2}} .
$$

Hence, $g(x) \frac{x}{\sqrt{1-4 x}}=\frac{1}{2 \sqrt{1-4 x}}+C$, where $C \in \mathbb{R}$. Or, equivalently

$$
\begin{equation*}
g(x)=\frac{1+2 C \sqrt{1-4 x}}{2 x} . \tag{7.7}
\end{equation*}
$$

Note that $C_{0}=\lim _{x \rightarrow 0} g(x)=1$ and hence, $C=-\frac{1}{2}$. Thus,

$$
g(x)=\frac{1-\sqrt{1-4 x}}{2 x} .
$$

Alternate. Recall that C_{n} is the number of representations of the product of $n+1$ square matrices of the same size, using n pairs of brackets. From such a representation, remove the leftmost and the rightmost brackets to obtain the product of two representations of the form:
$A_{1}\left(A_{2} \cdots A_{n+1}\right),\left(A_{1} A_{2}\right)\left(A_{3} \cdots A_{n+1}\right), \cdots,\left(A_{1} \cdots A_{k}\right)\left(A_{k+1} \cdots A_{n+1}\right), \cdots,\left(A_{1} \cdots A_{n}\right) A_{n+1}$.
Hence, we see that

$$
\begin{equation*}
C_{n}=C_{0} C_{n-1}+C_{1} C_{n-2}+\cdots+C_{n-1} C_{0} . \tag{7.8}
\end{equation*}
$$

Thus, if we define $g(x)=\sum_{n=0}^{\infty} C_{n} x^{n}$, then for $n \geq 1$,

$$
\mathrm{CF}\left[x^{n-1}, g(x)^{2}\right]=\mathrm{CF}\left[x^{n-1},\left(\sum_{n=0}^{\infty} C_{n} x^{n}\right)^{2}\right]=\sum_{i=0}^{n-1} C_{i} C_{n-1-i}=C_{n} \text { using Equation (7.8). }
$$

That is, $\mathrm{CF}\left[x^{n}, x g(x)^{2}\right]=C_{n}$. Hence, $g(x)=1+x g(x)^{2}$. Solving for $g(x)$, we get

$$
g(x)=\frac{1}{2}\left(\frac{1}{x} \pm \sqrt{\frac{1}{x^{2}}-\frac{4}{x}}\right)=\frac{1 \pm \sqrt{1-4 x}}{2 x} .
$$

As the function g is continuous (being a power series in the domain of convergence) and $\lim _{x \rightarrow 0} g(x)=C_{0}=1$, it follows that

$$
g(x)=\frac{1-\sqrt{1-4 x}}{2 x} .
$$

2. Fix $r \in \mathbb{N}$ and let $\left(a_{n}\right)$ be a sequence with $a_{0}=1$ and $\sum_{k=0}^{n} a_{k} a_{n-k}=C(n+r, r)$, for all $n \geq 1$. Determine a_{n}.

Ans: Let $g(x)=\sum_{n \geq 0} a_{n} x^{n}$. Then, note that $C(n+r, r)=c(n+(r+1)-1, n)$. Hence,

$$
g(x)^{2}=\sum_{n \geq 0}\left(\sum_{k=0}^{n} a_{k} a_{n-k}\right) x^{n}=\sum_{n \geq 0} C(n+r, r) x^{n}=\sum_{n \geq 0} C(n+r, n) x^{n}=\frac{1}{(1-x)^{r+1}} .
$$

Hence, $a_{n}=\operatorname{CF}\left[x^{n}, \frac{1}{(1-x)^{(r+1) / 2}}\right]$. For example, for $r=2$,

$$
a_{n}=(-1)^{n} C(-3 / 2, n)=\frac{3 \cdot 5 \cdot 7 \cdots(2 n+1)}{2^{n} n!}=\frac{(2 n+1)!}{2^{2 n} n!n!} .
$$

3. Determine the sequence $\left\{f(n, m) \mid n, m \in \mathbb{N}_{0}\right\}$ which satisfies $f(n, 0)=1$ for all $n \geq 0$, $f(0, m)=0$ for all $m>0$ and

$$
\begin{equation*}
f(n, m)=f(n-1, m)+f(n-1, m-1) \text { for }(n, m) \neq(0,0) . \tag{7.9}
\end{equation*}
$$

Ans: Define $F_{n}(x)=\sum_{m \geq 0} f(n, m) x^{m}$. Then, for $n \geq 1$, Equation (7.9) gives

$$
\begin{aligned}
F_{n}(x) & =\sum_{m \geq 0} f(n, m) x^{m}=\sum_{m \geq 0}(f(n-1, m)+f(n-1, m-1)) x^{m} \\
& =\sum_{m \geq 0} f(n-1, m) x^{m}+\sum_{m \geq 0} f(n-1, m-1) x^{m} \\
& =F_{n-1}(x)+x F_{n-1}(x)=(1+x) F_{n-1}(x)=\cdots=(1+x)^{n} F_{0}(x) .
\end{aligned}
$$

Now, using the initial conditions, $F_{0}(x)=1$ and hence $F_{n}(x)=(1+x)^{n}$. Thus,

$$
f(n, m)=\operatorname{CF}\left[x^{m},(1+x)^{n}\right]= \begin{cases}C(n, m) & \text { if } 0 \leq m \leq n \\ 0 & \text { if } m>n .\end{cases}
$$

Alternate. Define $G_{m}(y)=\sum_{n \geq 0} f(n, m) y^{n}$. Then, for $m \geq 1$, Equation (7.9) gives

$$
\begin{aligned}
G_{m}(y) & =\sum_{n \geq 0} f(n, m) y^{n}=\sum_{n \geq 0}(f(n-1, m)+f(n-1, m-1)) y^{n} \\
& =\sum_{n \geq 0} f(n-1, m) y^{n}+\sum_{n \geq 0} f(n-1, m-1) y^{n} \\
& =y G_{m}(y)+y G_{m-1}(y) .
\end{aligned}
$$

Therefore, $G_{m}(y)=\frac{y}{1-y} G_{m-1}(y)$. Using initial conditions, $G_{0}(y)=\frac{1}{1-y}$. Hence, $G_{m}(y)=\frac{y^{m}}{(1-y)^{m+1}}$. Thus,

$$
f(n, m)=\mathrm{CF}\left[y^{n}, \frac{y^{m}}{(1-y)^{m+1}}\right]=\mathrm{CF}\left[y^{n-m}, \frac{1}{(1-y)^{m+1}}\right]= \begin{cases}C(n, m) & \text { if } 0 \leq m \leq n \\ 0 & \text { if } m>n\end{cases}
$$

4. Determine the sequence $\left\{S(n, m) \mid n, m \in \mathbb{N}_{0}\right\}$ which satisfy $S(0,0)=1, S(n, m)=0$ if either $m=0$ or $n=0$ but not both and

$$
\begin{equation*}
S(n, m)=m S(n-1, m)+S(n-1, m-1),(n, m) \neq(0,0) . \tag{7.10}
\end{equation*}
$$

Ans: Define $G_{m}(y)=\sum_{n \geq 0} S(n, m) y^{n}$. Then, for $m \geq 1$, Equation (7.10) gives

$$
\begin{aligned}
G_{m}(y) & =\sum_{n \geq 0} S(n, m) y^{n}=\sum_{n \geq 0}(m S(n-1, m)+S(n-1, m-1)) y^{n} \\
& =m \sum_{n \geq 0} S(n-1, m) y^{n}+\sum_{n \geq 0} S(n-1, m-1) y^{n} \\
& =m y G_{m}(y)+y G_{m-1}(y) .
\end{aligned}
$$

Therefore, $G_{m}(y)=\frac{y}{1-m y} G_{m-1}(y)$. Using initial conditions, $G_{0}(y)=1$ and hence

$$
\begin{equation*}
G_{m}(y)=\frac{y^{m}}{(1-y)(1-2 y) \cdots(1-m y)}=y^{m} \sum_{k=1}^{m} \frac{\alpha_{k}}{1-k y}, \tag{7.11}
\end{equation*}
$$

where $\alpha_{k}=\frac{(-1)^{m-k} k^{m}}{k!(m-k)!}$, for $1 \leq k \leq m$. Thus,

$$
\begin{align*}
S(n, m) & =\mathrm{CF}\left[y^{n}, y^{m} \sum_{k=1}^{m} \frac{\alpha_{k}}{1-k y}\right]=\sum_{k=1}^{m} \mathrm{CF}\left[y^{n-m}, \frac{\alpha_{k}}{1-k y}\right] \\
& =\sum_{k=1}^{m} \alpha_{k} k^{n-m}=\sum_{k=1}^{m} \frac{(-1)^{m-k} k^{n}}{k!(m-k)!} \\
& =\frac{1}{m!} \sum_{k=1}^{m}(-1)^{m-k} k^{n} C(m, k)=\frac{1}{m!} \sum_{k=1}^{m}(-1)^{k}(m-k)^{n} C(m, k) . \tag{7.12}
\end{align*}
$$

Therefore, $S(n, m)=\frac{1}{m!} \sum_{k=1}^{m}(-1)^{k}(m-k)^{n} C(m, k)$.
This identity is generally known as the Stirling's Identity.

Observation.

(a) Let us consider $H_{n}(x)=\sum_{m>0} S(n, m) x^{m}$. Then, verify that $H_{n}(x)=(x+x D)^{n} \cdot 1$ as $H_{0}(x)=1$. Therefore, $H_{1}(x)=x, H_{2}(x)=x+x^{2}, \cdots$. Thus, we don't have a single expression for $H_{n}(x)$ which gives the value of $S(n, m)$'s. But, it helps in showing that $S(n, m)$, for fixed $n \in \mathbb{N}$, first increase and then decrease (commonly called unimodal). The same holds for the sequence of binomial coefficients $\{C(n, m), m=0,1, \ldots, n\}$.
(b) As there is no restriction on $n . m \in \mathbb{N}_{0}$, Equation (7.12) is also valid for $n<m$. But, we know that $S(n, m)=0$, whenever $n<m$. Hence, we get the following identity,

$$
\sum_{k=1}^{m} \frac{(-1)^{m-k} k^{n-1}}{(k-1)!(m-k)!}=0 \text { whenever } n<m .
$$

5. Bell Numbers For $n \in \mathbb{N}$, the n-th Bell number, denoted $b(n)$, is the number of partitions of $[n]$. Thus, $b(n)=\sum_{m=1}^{n} S(n, m)$, for $n \geq 1$ and $b(0)=1$. Hence, for $n \geq 1$,

$$
\begin{align*}
b(n) & =\sum_{m=1}^{n} S(n, m)=\sum_{m \geq 1} S(n, m)=\sum_{m \geq 1} \sum_{k=1}^{m} \frac{(-1)^{m-k} k^{n-1}}{(k-1)!(m-k)!} \\
& =\sum_{k \geq 1} \frac{k^{n}}{k!} \sum_{m \geq k} \frac{(-1)^{m-k}}{(m-k)!}=\frac{1}{e} \sum_{k \geq 1} \frac{k^{n}}{k!}=\frac{1}{e} \sum_{k \geq 0} \frac{k^{n}}{k!} \text { as } 0^{n}=0 \text { for } n \neq 0 . \tag{7.13}
\end{align*}
$$

Thus, Equation (7.13) is valid even for $n=0$. As $b(n)$ has terms of the form $\frac{k^{n}}{k!}$, we compute its egf. Thus, if $B(x)=\sum_{n \geq 0} b(n) \frac{x^{n}}{n!}$ then,

$$
\begin{align*}
B(x) & =1+\sum_{n \geq 1} b(n) \frac{x^{n}}{n!}=1+\sum_{n \geq 1}\left(\frac{1}{e} \sum_{k \geq 1} \frac{k^{n}}{k!}\right) \frac{x^{n}}{n!} \\
& =1+\frac{1}{e} \sum_{k \geq 1} \frac{1}{k!} \sum_{n \geq 1} k^{n} \frac{x^{n}}{n!}=1+\frac{1}{e} \sum_{k \geq 1} \frac{1}{k!} \sum_{n \geq 1} \frac{(k x)^{n}}{n!} \\
& =1+\frac{1}{e} \sum_{k \geq 1} \frac{1}{k!}\left(e^{k x}-1\right)=1+\frac{1}{e} \sum_{k \geq 1}\left(\frac{\left(e^{x}\right)^{k}}{k!}-\frac{1}{k!}\right) \\
& =1+\frac{1}{e}\left(e^{e^{x}}-1-(e-1)\right)=e^{e^{x}-1} . \tag{7.14}
\end{align*}
$$

Recall that $e^{e^{x}-1}$ is a valid formal power series (see Remark 7.3.5). Taking logarithm of Equation (7.14), we get $\log B(x)=e^{x}-1$. Hence, $B^{\prime}(x)=e^{x} B(x)$, or equivalently

$$
x \sum_{n \geq 1} \frac{b(n) x^{n-1}}{(n-1)!}=x e^{x} \sum_{n \geq 0} b(n) \frac{x^{n}}{n!}=x\left(\sum_{m \geq 0} \frac{x^{m}}{m!}\right) \cdot\left(\sum_{n \geq 0} b(n) \frac{x^{n}}{n!}\right) .
$$

Thus,

$$
\begin{aligned}
\frac{b(n)}{(n-1)!} & =\mathrm{CF}\left[x^{n}, \sum_{n \geq 1} \frac{b(n) x^{n}}{(n-1)!}\right]=\mathrm{CF}\left[x^{n-1}, \sum_{m \geq 0} \frac{x^{m}}{m!} \cdot \sum_{n \geq 0} b(n) \frac{x^{n}}{n!}\right] \\
& =\sum_{m=0}^{n-1} \frac{1}{(n-1-m)!} \cdot \frac{b(m)}{m!} .
\end{aligned}
$$

Hence, we get $b(n)=\sum_{m=0}^{n-1} C(n-1, m) b(m)$, for $n \geq 1$, with $b(0)=1$.
Exercise 7.5.4. 1. Find the number of binary words without having a subword 00 and 111.
2. Find the number of subsets of $\{1, \ldots, n\}$ not containing consecutive integers.
3. Prove that F_{n} divides $F_{n m}$ where n, m are positive integers.

Objects distinct?	Places distinct?	Places nonempty?	Relate	Number
Y	Y	Y	Onto functions	$\begin{aligned} & r!S(n, r)= \\ & \sum_{i=0}^{r-1}(-1)^{i} C(r, i)(r-i)^{n} \end{aligned}$
Y	Y	N	All functions	r^{n}
Y	N	Y	r-partition of a set	$S(n, r)$
Y	N	N	All partitions of a set	$b(n)=\sum_{i=1}^{r} S(n, i)$
N	Y	Y	Positive integer solutions	$C(n-1, r-1)$
N	Y	N	Nonnegative integer solutions	$C(n+r-1, r-1)$
N	N	Y	r-partition of n	$\begin{aligned} & \pi_{n}(r)= \\ & \text { CF }\left[x^{n-r}, \frac{1}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{r}\right)}\right] \end{aligned}$
N	N	N	Partitions of n of length $\leq r$	$\sum_{i=1}^{r} \pi_{n}(i)$

Exercise 7.5.5. 1. Find the number of circular permutations of $\{A, A, B, B, C, C, C, C\}$.
2. Let $S=\left\{\left(n_{1}, n_{2}, n_{3}\right) \mid n_{i} \in \mathbb{N}, \sum n_{i}=15\right\}$. Evaluate $\sum_{\left(n_{1}, n_{2}, n_{3}\right) \in S} \frac{15!}{n_{1}!n_{2}!n_{3}!}$.
3. Each of the 9 senior students said: 'the number of junior students I want to help is exactly one'. There were 4 junior students a, b, c, d, who wanted their help. The allocation was done randomly. What is the probability that either a has exactly two seniors to help him or b has exactly 3 seniors to help him or c has no seniors to help him?
4. In a particular semester 6 students took admission in our PhD programme. There were 9 professors who were willing to supervise these students. As a rule 'a student can have
either one or two supervisors'. In how many ways can we allocate supervisors to these students if all the 'willing professors' are to be allocated? What if we have an additional condition that exactly one supervisor gets to supervise two students?
5. How many lattice paths are there from $(0,0)$ to $(9,9)$ which does not cross the dotted line? $(9,9)$

$(0,0)$
6. (a) Prove combinatorially that, for $n \geq 2$, we have $D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right)$.
(b) Use Part (a) to show that the exponential generating function of D_{n} is $\frac{e^{-x}}{1-x}$.
7. My friend says that he has $n \geq 2$ subsets of [14] each of which has size 6 . Give a value of n so that we can guarantee 'some two of his subsets have 3 elements in common', without seeing his collection'? What is the smallest possible value of n ?
8. Find the number of words of size 12 made using letters from $\{A, B, C\}$ in which ' $B C A$ ' does not appear (as a consecutive subword). For example: ABCABCCCCCBA has an appearance of ' $B C A$ ' but $B C C A B C C A B C C A$ does not.
9. Find the number of 8 letter words made using alphabets from $\{A, B, C, D\}$ in which 3 consecutive letters are not allowed to be the same.
10. Evaluate $\sum_{i_{1}=1}^{9} \sum_{i_{2}=1}^{i_{1}} \sum_{i_{3}=1}^{i_{2}} \cdots \sum_{i_{9}=1}^{i_{8}} i_{9}^{2}$.
11. We have 3 blue bags, 4 red bags and 5 green bags. We have many balls of each of the colors blue, red and green. Fill in the blank with the smallest positive integer.

If we distribute \qquad balls (without seeing the colors) into these bags, then one of the following must happen:
(a) a blue bag contains 3 blue balls or 4 red balls or 5 green balls
(b) a red bag contains 3 blue balls or 5 red balls or 7 green balls
(c) a green bag contains 3 blue balls or 6 red balls or 9 green balls
12. We have an integer polynomial $f(x)$. Fill in the blank with the smallest positive integer. If $f(x)=2009$ has ___ many distinct integer roots, then $f(x)=9002$ cannot have an integer root.
13. In how many ways can one distribute
(a) 10 identical chocolates among 10 students?
(b) 10 distinct chocolates among 10 students?
(c) 10 distinct chocolates among 10 students so that each receives one?
(d) 15 distinct chocolates among 10 students so that each receives at least one?
(e) 10 out of 15 distinct chocolates among 10 students so that each receives one?
(f) 15 distinct chocolates among 10 students so that each receives at most three?
(g) 15 distinct chocolates among 10 students so that each receives at least one and at most three?
(h) 15 identical chocolates among 10 students so that each receives at most three?
14. In how many ways can one carry
(a) 15 distinct objects with 10 identical bags? Answer using $S(n, r)$.
(b) 15 distinct objects in 10 identical bags with no empty bag? Answer using $S(n, r)$.
(c) 15 distinct objects in 10 identical bags with each bag containing at most three objects?
(d) 15 identical objects in 10 identical bags?
(e) 15 identical objects in 10 identical bags with no empty bag?
(f) 15 identical objects in 20 identical bags with no empty bag?
15. What is the number of integer solutions of $x+y+z=10$, with $x \geq-1, y \geq-2$ and $z \geq-3$?
16. Is the number of solutions of $x+y+z=10$ in nonnegative multiples of $\frac{1}{2}$ (x, y, z are allowed to be $0,1 / 2,1,3 / 2, \ldots)$ at most four times the number of nonnegative integer solutions of $x+y+z=10$?
17. How many words of length 8 can be formed using the English alphabets, where each letter can appear at most twice? Give answer using generating function.
18. Let $p_{1}, \ldots, p_{n}, n \geq 2$ be distinct prime numbers. Consider the set $\left\{p_{1}, \ldots, p_{n}, p_{1}^{2}, \ldots, p_{n}^{2}\right\}$. In how many ways can we partition the set into subsets of size two such that no prime is in the same subset containing its square?
19. What is the value of $\sum_{k=0}^{15}(-1)^{k} C(15, k)(15-k)^{5}$?
20. What is the number of partitions
(a) of n with entries at most r ? Give your answers using generating function.
(b) of n with most r parts? Give your answers using generating function.
(c) $\pi_{n}(r)$ of n with exactly r parts? Give your answers using generating function.
(d) $\pi_{n}(r)$ of $n+C(r, 2)$ with r distinct parts? Give your answers using generating function.
(e) of n with distinct entries? Give your answers using generating function.
(f) of n with entries odd? Give your answers using generating function.
(g) of n with distinct odd entries? Give your answers using generating function.
(h) of n which are self conjugate? Give your answers using generating function.
21. How many words of length 15 are there using the letters A, B, C, D, E such that each letter must appear in the word and A appears an even number of times? Give your answers using generating function.
22. The characteristic roots of a LHRRCC are $2,2,2,3,3$. What is the form of the general solution?
23. Consider the LNHRRCC $a_{n}=c_{1} a_{n-1}+\cdots+c_{r} a_{n-r}+5^{n}$. Give a particular solution.
24. Obtain the ogf for a_{n}, where $a_{n}=2 a_{n-1}-a_{n-2}+2^{n}$, $a_{0}=0, a_{1}=1$.
25. Solve the recurrence relation $a_{n}=2 a_{n-1}-a_{n-2}+2^{n}+5, a_{0}=0, a_{1}=1$.
26. My class has n CSE, m MSC and r MC students. Suppose that t copies of the same book are to be distributed so that each branch gets at least s. In how many ways can this be done, if each student gets at most one? In how many ways can this be done, without the previous restriction? Answer only using generating function.
Exercise 7.5.6. 1. My class has n CSE, m MSC and r MC students. Suppose that t distinct books are to be distributed so that each branch gets at least s. In how many ways can this be done, if each student gets at most one? In how many ways can this be done, without the previous restriction? Answer only using generating function.
2. My class has N students. Assume that, to conduct an exam, we have M identical answer scripts. In how many ways can we distribute the answer scripts so that each student gets at least 2. Answer only using generating function.
3. My class has N students. Assume that, for an exam, we have M questions; each student answers all the questions in an order decided by him/her (for example one can follow $1,2, \cdots, M$ and another can follow $M, M-1, \cdots, 1)$. In how many ways can it happen that some three or more students have followed the same order? Answer only using generating function.
4. When 'Freshers Welcome' was organized 11 teachers went to attend. There were 4 types of soft drinks available. In how many ways a total of 18 glasses of soft drinks can be served to them, in general? Answer only using generating function.

Chapter 8

Graphs

8.1 Basic Concepts

Experiment

'Start from a dot. Move through each line exactly once. Draw it.' Which of the following pictures can be drawn? What if we want the 'starting dot to be the finishing dot'?

Later, we shall see a theorem by Euler addressing this question.
Definition 8.1.1. [Pseudograph, Vertex set and Edge set] A pseudograph or a general graph G is a pair (V, E) where V is a nonempty set and E is a multiset of unordered pairs of points of V. The set V is called the vertex set and its elements are called vertices. The set E is called the edge set and its elements are called edges.
Example 8.1.2. $G=([4],\{\{1,1\},\{1,2\},\{2,2\},\{3,4\},\{3,4\}\})$ is a pseudograph.
Discussion 8.1.3. A pseudograph can be represented in picture in the following way.

1. Put different points on the paper for vertices and label them.
2. If $\{u, v\}$ appears in E some k times, draw k distinct lines joining the points u and v.
3. A loop at u is drawn if $\{u, u\} \in E$.

Example 8.1.4. A picture for the pseudograph in Example 8.1.2 is given in Figure 8.1.

Definition 8.1.5. [Loop, End vertex and Incident vertex/edge]

1. An edge $\{u, v\}$ is sometimes denoted $u v$. An edge $u u$ is called a loop. The vertices u and v are called the end vertices of the edge $u v$. Let e be an edge. We say ' e is incident on u ' to mean that ' u is an end vertex of e '.

Figure 8.1: A pseudograph
2. [Multigraph and simple graph] A multigraph is a pseudograph without loops. A multigraph is a simple graph if no edge appears twice. ${ }^{1}$
3. Henceforth, all graphs in this book are simple with a finite vertex set, unless stated otherwise.
4. We use $\boldsymbol{V}(\boldsymbol{G})$ (or simply \boldsymbol{V}) and $\boldsymbol{E}(\boldsymbol{G})$ (or simply \boldsymbol{E}) to denote the vertex set and the edge set of G, respectively. The number $|V(G)|$ is the order of the graph G. Sometimes it is denoted $|\boldsymbol{G}|$. By $\|\boldsymbol{G}\|$ we denote the number of edges of G. A graph with n vertices and m edges is called a $(\boldsymbol{n}, \boldsymbol{m})$ graph. The $(1,0)$ graph is the trivial graph.
5. [Neighbor and independent set] If $u v$ is an edge in G, then we say ' u and v are adjacent in G ' or ' u is a neighbor of v '. We write $u \sim v$ to denote that ' u is adjacent to v '. Two edges e_{1} and e_{2} are adjacent if they have a common end vertex. A set of vertices or edges is independent if no two of them are adjacent.
6. [Isolated and pendant vertex] If $v \in V(G)$, by $\boldsymbol{N}(\boldsymbol{v})$ or $\boldsymbol{N}_{\boldsymbol{G}}(\boldsymbol{v})$, we denote the set of neighbors of v in G and $|N(v)|$ is called the degree of v. It is usually denoted by $\boldsymbol{d}_{G}(\boldsymbol{v})$ or $\boldsymbol{d}(\boldsymbol{v})$. A vertex of degree 0 is called isolated. A vertex of degree one is called a pendant vertex.

Discussion 8.1.6. Note that a graph is an algebraic structure, namely, a pair of sets satisfying some conditions. However, it is easy to describe and carry out the arguments with a pictorial representation of a graph. Henceforth, the pictorial representations are used to describe graphs and to provide our arguments, whenever required. There is no loss of generality in doing this.

Example 8.1.7. Consider the graph G in Figure 8.2. The vertex 12 is an isolated vertex. We have $N(1)=\{2,4,7\}, d(1)=3$. The set $\{9,10,11,2,4,7\}$ is an independent vertex set. The set $\{\{1,2\},\{8,10\},\{4,5\}\}$ is an independent edge set. The vertices 1 and 6 are not adjacent.

Definition 8.1.8. [Complete graph, path graph, cycle graph and bipartite graph] Let $G=$ (V, E) be a graph on n vertices, say $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Then, G is said to be a

1. complete graph, denoted K_{n}, if each pair of vertices in G are adjacent.
2. path graph, denoted $\boldsymbol{P}_{\boldsymbol{n}}$, if $E=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\}$.

[^8]

Figure 8.2: A graph G.
3. cycle graph, denoted $\boldsymbol{C}_{\boldsymbol{n}}$, if $E=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\}$.
4. complete bipartite graph, denoted $K_{r, s}$ and $E=\left\{v_{i} v_{j} \mid 1 \leq i \leq r, r+1 \leq j \leq n\right\}$ with $r+s=n$.

The importance of the labels of the vertices depends on the context. At this point of time, even if we interchange the labels of the vertices, we still call them a complete graph or a path graph or a cycle or a complete bi-partite graph.

Figure 8.3: P_{n} and C_{n}.

Quiz 8.1.9. What is the maximum number of edges possible in a simple graph of order n ? ${ }^{1}$
Lemma 8.1.10. [Hand shaking lemma] In any graph $G, \sum_{v \in V} d(v)=2|E|$. Thus, the number of vertices of odd degree is even.

Proof. Each edge contributes 2 to the sum $\sum_{v \in V} d(v)$. Hence, $\sum_{v \in V} d(v)=2|E|$. Note that

$$
2|E|=\sum_{v \in V} d(v)=\sum_{d(v) \text { is odd }} d(v)+\sum_{d(v) \text { is even }} d(v)
$$

is even. So, $\sum_{d(v)}$ is odd $d(v)$ is even. Hence, the number of vertices of odd degree is even.
Quiz 8.1.11. In a party of 27 persons, prove that someone must have an even number of friends (friendship is mutual). ${ }^{2}$

Proposition 8.1.12. In a graph G with $n=|G| \geq 2$, there are two vertices of equal degree.

[^9]

Figure 8.4: Some well known family of graphs

Proof. If G has two or more isolated vertices, we are done. So, suppose G has exactly one isolated vertex. Then, the remaining $n-1$ vertices have degree between 1 and $n-2$ and hence by PHP, the result follows. If G has no isolated vertex then G has n vertices whose degree lie between 1 and $n-1$. Now, again apply PHP to get the required result.

Example 8.1.13. The graph in Figure 8.5 is called the Petersen graph. We shall use it as an example in many places.

Figure 8.5: Petersen graphs

Exercise 8.1.14. 1. Let $X=(V, E)$ be a graph with a vertex $v \in V$ of odd degree. Then, prove that there exists a vertex $u \in V$ such that there is a path from v to u and $\operatorname{deg}(u)$ is
also odd.
2. Let $X=(V, E)$ be a graph having exactly two vertices, say u and v, of odd degree. Then, prove that there is a path in X connecting u and v.

Definition 8.1.15. [Regular graph, cubic graph] The minimum degree of a vertex in G is denoted $\boldsymbol{\delta}(\boldsymbol{G})$ and the maximum degree of a vertex in G is denoted $\boldsymbol{\Delta} \boldsymbol{(G)}$. A graph G is called \boldsymbol{k}-regular if $d(v)=k$ for all $v \in V(G)$. A 3-regular graph is called cubic.
Example 8.1.16. 1. The graph K_{n} is regular.
2. The graph K_{4} is cubic.
3. The graph C_{4} is 2-regular.
4. The graph P_{4} is not regular.
5. The Petersen graph is cubic.
6. Consider the graph G in Figure 8.2. We have $\delta(G)=0$ and $\Delta(G)=3$.

Quiz 8.1.17. Can we have a cubic graph on 5 vertices? ${ }^{1}$
Definition 8.1.18. [Subgraph, induced subgraph, spanning subgraph and k-factor] A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. If $U \subseteq V(G)$, then the subgraph induced by U is denoted by $\langle\boldsymbol{U}\rangle=(U, E)$, where the edge set $E=\{u v \in E(G) \mid u, v \in U\}$. A subgraph H of G is a spanning subgraph if $V(G)=V(H)$. A k-regular spanning subgraph is called a \boldsymbol{k}-factor.

Example 8.1.19. 1. Consider the graph G in Figure 8.2.
(a) Let H_{1} be the graph with $V\left(H_{1}\right)=\{6,7,8,9,10,12\}$ and $E\left(H_{1}\right)=\{\{6,7\},\{9,10\}\}$. Then, H_{1} is not a subgraph of G.
(b) Let H_{2} be the graph with $V\left(H_{2}\right)=\{6,7,8,9,10,12\}$ and $E\left(H_{2}\right)=\{\{6,7\},\{8,10\}\}$. Then, H_{2} is a subgraph but not an induced subgraph of G.
(c) Let H_{3} be the induced subgraph of G on the vertex set $\{6,7,8,9,10,12\}$. Then, verify that $E\left(H_{3}\right)=\{\{6,7\},\{8,9\},\{8,10\}\}$.
(d) The graph G does not have a 1-factor.
2. A complete graph has a 1 -factor if and only if it has an even order.
3. The Petersen graph has many 1 -factors. One of them is obtained by selecting the edges $\{1,6\},\{2,7\},\{3,8\},\{4,9\}$, and $\{5,10\}$.

Quiz 8.1.20. Consider K_{8} on the vertex set [8]. How many 1 -factors does it have? ${ }^{2}$
Definition 8.1.21. [Vertex/edge deleted graph] Let G be a graph and v be a vertex. Then, the graph $\boldsymbol{G}-\boldsymbol{v}$ is obtained by deleting v and all the edges that are incident with v. If $e \in E(G)$, then the graph $G-e=(V, E(G) \backslash\{e\})$. If $u, v \in V(G)$ such that $u \nsim v$, then $G+u v=(V, E(G) \cup\{u v\})$.

[^10]Example 8.1.22. Consider the graph G in Figure 8.2. Let H_{2} be the graph with $V\left(H_{2}\right)=$ $\{6,7,8,9,10,12\}$ and $E\left(H_{2}\right)=\{\{6,7\},\{8,10\}\}$. Consider the edge $e=\{8,9\}$. Then, $H_{2}+e$ is the induced subgraph $\langle\{6,7,8,9,10,12\}\rangle$ and $H_{2}-8=\langle\{6,7,9,10,12\}\rangle$.

Definition 8.1.23. [Complement graph] The complement \bar{G} of a graph G is defined as $(V(G), E)$, where $E=\{u v \mid u \neq v, u v \notin E(G)\}$.

Example 8.1.24. 1. See the graphs in Figure 8.6.

Figure 8.6: Complement graphs
2. The complement of K_{3} contains 3 isolated points.
3. For any graph $G,\|G\|+\|\bar{G}\|=C(|G|, 2)$.
4. In any graph G of order $n, d_{G}(v)+d_{\bar{G}}(v)=n-1$. Thus, $\Delta(G)+\Delta(\bar{G}) \geq n-1$.

Quiz 8.1.25. 1. Characterize graphs G such that $\Delta(G)+\Delta(\bar{G})=n-1 .{ }^{1}$
2. Can we have a graph G such that $\Delta(G)+\Delta(\bar{G})=n$?
3. Show that a k-regular simple graph on n vertices exists if and only if $k n$ is even and $n \geq k+1$.

Definition 8.1.26. [Intersection, union and disjoint union] The intersection of two graphs G and H, denoted $G \cap H$, is defined as $(V(G) \cap V(H), E(G) \cap E(H))$. The union of two graphs G and H, denoted $G \cup H$, is defined as $(V(G) \cup V(H), E(G) \cup E(H))$. A disjoint union of two graphs is the union while treating the vertex sets as disjoint sets.

Example 8.1.27. Two graphs G and H are shown below. The graphs $G \cup H$ and $G \cap H$ are also shown below.

The disjoint union of G and $G \cup H$ is G_{1} in Figure 8.7.

[^11]

Figure 8.7: Disjoint union and join of graphs
Definition 8.1.28. [Join of two graphs] If $V(G) \cap V\left(G^{\prime}\right)=\emptyset$, then the join $G+G^{\prime}$ is defined as $G \cup G^{\prime}+\left\{v v^{\prime}: v \in V, v^{\prime} \in V^{\prime}\right\}$. The first '+' means the join of two graphs and the second ' + ' means adding a set of edges to a given graph.

Example 8.1.29. (a) $K_{2}+K_{3}=K_{5}$.
(b) $\overline{K_{2}}+\overline{K_{2}}=C_{4}$.

Quiz 8.1.30. What is the complement of the disjoint union of \bar{G} and \bar{H} ?1
Definition 8.1.31. [Cartesian product of two graphs] Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs. Then, the cartesian product of G and G^{\prime}, denoted $G \times G^{\prime}=\left(V_{1}, E_{1}\right)$, is a graph having $V_{1}=V \times V^{\prime}$ and whose edge set consists of all elements $\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\}$, where either $u_{1}=v_{1}$ and $\left\{u_{2}, v_{2}\right\} \in E^{\prime}$ or $u_{2}=v_{2}$ and $\left\{u_{1}, v_{1}\right\} \in E$.

Example 8.1.32. See the graphs in Figure 8.8.

Figure 8.8: Cartesian product of graphs

8.2 Connectedness

Definition 8.2.1. [Walk, trail, path, cycle, circuit, length and internal vertex] An $u \boldsymbol{u} \boldsymbol{v}$ walk in G is a finite sequence of vertices $\left[u=v_{1}, v_{2}, \cdots, v_{k}=v\right]$ such that $v_{i} v_{i+1} \in E$, for all $i=1, \cdots, k-1$. The length of a walk is the number of edges on it. A walk is called a trail if edges on the walk are not repeated. A $v-u$ walk is a called a path if the vertices involved are all distinct, except that v and u may be the same. A path can have length 0 . A walk (trail, path)

[^12]is called closed if $u=v$. A closed path is called a cycle/circuit. Thus, in a simple graph a cycle has length at least 3 . A cycle (walk, path) of length k is also written as a k-cycle (k-walk, k-path). If P is an $u-v$ path with $u \neq v$, then we sometimes call u and v as the end vertices of \boldsymbol{P} and the remaining vertices on P as the internal vertices.

Example 8.2.2.

(a) Take $G=K_{5}$ with vertex set [5].

- Then, $[1,2,3,2,1,2,5,4,3]$ is a 8 -walk in G and $[1,2,2,1]$ is not a walk.
- The walk $[1,2,3,4,5,2,4,1]$ is a closed trail.
- The walk $[1,2,3,5,4,1]$ is a closed path, that is, it is a 5 -cycle.
- The maximum length of a cycle in G is 5 and the minimum length of a cycle in G is 3 .
- There are $10=C(5,3)$ many 3 -cycles in G.
- Verify that the number of 4 -cycles in G is not $C(5,4)$.
(b) Let G be the Petersen graph.
- There is a 9 -cycle in G, namely, $[6,8,10,5,4,3,2,7,9,6]$.
- There are no 10 -cycles in G. We shall see this when we discuss the Eulerian graphs.

Proposition 8.2.3 (Technique). Let G be a graph and $u, v \in V(G), u \neq v$. Let $W=[u=$ $\left.u_{1}, \ldots, u_{k}=v\right]$ be a walk. Then, W contains an u-v-path.

Proof. If no vertex on W repeats, then W is itself a path. So, let $u_{i}=u_{j}$ for some $i<j$. Now, consider the walk $W_{1}=\left[u_{1}, \ldots, u_{i-1}, u_{j}, u_{j+1}, \ldots u_{k}\right]$. This is also an $u-v$ walk but of shorter length. Thus, using induction on the length of the walk, the desired result follows.

Definition 8.2.4. [Distance, diameter, radius, center and girth] The distance $d(u, v)$ of two vertices in G is the shortest length of an $u-v$ path in G. If no such path exists, the distance is taken to be ∞. The greatest distance between any two vertices in a graph G is called the diameter of G. We shall use $\operatorname{diam}(G)$ to denote the diameter of G. Let $d i s t_{v}=\max _{u \in G} d(v, u)$. The radius is the $\min _{v \in G} d i s t_{v}$ and the center consists of all vertices v for which $d i s t_{v}$ is the radius. The girth, denoted $g(G)$, of a graph G is the minimum length of a cycle contained in G. If G has no cycle, then we put $g(G)=\infty$.

Example 8.2.5. Let G be the Petersen graph. It has diameter 2. The radius is 2. Each vertex is in the center. Its girth is 5 .

Practice 8.2.6. Determine the diameter, radius, center and girth of the following graphs: P_{n}, C_{n}, K_{n} and $K_{n, m}=\bar{K}_{n}+\bar{K}_{m}$.

Exercise 8.2.7. Let G be a graph. Then, show that the distance function $d(u, v)$ is a metric on $V(G)$. That is, it satisfies

1. $d(u, v) \geq 0$ for all $u, v \in V(G)$ and $d(u, v)=0$ if and only if $u=v$,
2. $d(u, v)=d(v, u)$ for all $u, v \in V(G)$ and
3. $d(u, v) \leq d(u, w)+d(w, u)$ for all $u, v, w \in V(G)$.

Proposition 8.2.8 (Technique). Let G be a graph with $\|G\| \geq 1$ and $d(v) \geq 2$, for each vertex except one, say v_{1}. Then, G has a cycle.

Proof. Consider a longest path $\left[v_{1}, \ldots, v_{k}\right]$ in G (as $V(G)$ is finite, such a path exists). As $d\left(v_{k}\right) \geq 2$, it must be adjacent to some vertex from v_{2}, \ldots, v_{k-2}, otherwise, we can extend it to a longer path. Let $i \geq 2$ be the smallest such that v_{i} is adjacent to v_{k}. Then, $\left[v_{i}, v_{i+1}, \ldots, v_{k}, v_{i}\right]$ is a cycle.

Proposition 8.2.9 (Technique). Let P and Q be two different $u-v$ paths in G. Then, $P \cup Q$ contains a cycle.

Proof. Imagine a signal was sent from u to v via P and was returned back from v to u via Q. Call an edge 'dead' if signal has passed through it twice. Notice that each vertex receives the signal as many times as it sends the signal.
Is $E(P)=E(Q)$? No, otherwise both P and Q are the same graphs.
So, there are some 'alive' edges. Get an alive edge $\overrightarrow{v_{1} v_{2}}$. There must be an alive edge $\overrightarrow{v_{2} v_{3}} .{ }^{1}$ Similarly get $\overrightarrow{v_{3} v_{4}}$ and so on. Stop at the first instance of repetition of a vertex: $\left[v_{1}, v_{2}, \cdots, v_{i}, v_{i+1} \cdots, v_{j}=v_{i}\right]$. Then, $\left[v_{i}, v_{i+1} \cdots, v_{j}=v_{i}\right]$ is a cycle.
Alternate. Consider the graph $H=(V(P) \cup V(Q), E(P) \Delta E(Q))$, where Δ is the symmetric difference. Notice that $E(H) \neq \emptyset$, otherwise $P=Q$. As the degree of each vertex in the multigraph $P \cup Q$ is even and H is obtained after deleting pairs of multiple edges, each vertex in H has even degree. Hence, by Proposition 8.2.8, H has a cycle.

Proposition 8.2.10. Every graph G containing a cycle satisfies $g(G) \leq 2 \operatorname{diam}(G)+1$.
Proof. Let $C=\left[v_{1}, v_{2}, \ldots, v_{k}, v_{1}\right]$ be the shortest cycle and $\operatorname{diam}(G)=r$. If $k \geq 2 r+2$, then consider the path $P=\left[v_{1}, v_{2}, \ldots, v_{r+2}\right]$. Since the length of P is $r+1$ and $\operatorname{diam}(G)=r$, there is a $v_{r+2}-v_{1}$ path R of length at most r. Note that P and R are different $v_{1}-v_{r+2}$ paths. By Proposition 8.2.9, the closed walk $P \cup R$ of length at most $2 r+1$ contains a cycle. Hence, the length of this cycle is at most $2 r+1$, a contradiction to C having the smallest length $k \geq 2 r+2$.

Definition 8.2.11. [Chord, chordal and acyclic graphs] Let $C=\left[v_{1}, \ldots, v_{k}=v_{1}\right]$ be a cycle. An edge $v_{i} v_{j}$ is called a chord of C if it is not an edge of C. A graph is called chordal if each cycle of length at least 4 has a chord. A graph is acyclic if it has no cycles.

Example 8.2.12. Complete graphs are chordal, so are the acyclic graphs. The Petersen graph is not chordal.

Quiz 8.2.13. 1. How many acyclic graphs are there on the vertex set $[3] ?^{2}$
2. How many chordal graphs are there on the vertex set [4]?3

[^13]Definition 8.2.14. 1. [Maximal and minimal graph] A graph G is said to be maximal with respect to a property P if G has property P and no proper supergraph of G has the property P. We similarly define the term minimal.

Notice!

The class of all graphs with that property is the POSET here. So, the maximality and the minimality are defined naturally.
2. [Clique, clique number and connected graph] A complete subgraph of G is called a clique. The maximum order of a clique is called the clique number of G. It is denoted $\omega(G)$. A graph G is called connected if there is an $u-v$ path, for each $u, v \in V(G)$.
3. [Disconnected graph and component of a graph] A graph which is not connected is called disconnected. If G is a disconnected graph, then a maximal connected subgraph is called a component or sometimes a connected component.

Example 8.2.15. Consider the graph G shown in Figure 8.2. Then,

1. some cliques in G are $\langle\{8,10\}\rangle,\langle\{2\}\rangle,\langle\{1,2,4\}\rangle$. The first and the last are maximal cliques. Notice that every vertex is a clique. Similarly each edge is a clique. Here $\omega(G)=3$.
2. the graph G is not connected. It has four connected components, namely, $\langle\{8,9,10,11\}\rangle$, $\langle\{1,2,3,4,5,6,7\}\rangle,\langle\{12\}\rangle$ and $\langle\{13\}\rangle$.

Quiz 8.2.16. What is $\omega(G)$ for the Petersen graph? ${ }^{1}$
Proposition 8.2.17. If $\delta(G) \geq 2$, then G has a path of length $\delta(G)$ and a cycle of length at least $\delta(G)+1$.

Proof. Let $\left[v_{1}, \cdots, v_{k}\right]$ be a longest path in G. As $d\left(v_{k}\right) \geq 2, v_{k}$ is adjacent to some vertex $v \neq v_{k-1}$. If v is not on the path, then we have a path that is longer than $\left[v_{1}, \cdots, v_{k}\right]$ path. A contradiction. Let i be the smallest positive integer such that v_{i} is adjacent to v_{k}. Thus,

$$
\delta(G) \leq d\left(v_{k}\right) \leq\left|\left\{v_{i}, v_{i+1}, \cdots, v_{k-1}\right\}\right| .
$$

Hence, the cycle $C=\left[v_{i}, v_{i+1}, \cdots, v_{k}, v_{i}\right]$ has length at least $\delta(G)+1$ and the length of the path $P=\left[v_{i}, v_{i+1}, \cdots, v_{k}\right]$ is at least $\delta(G)$.

Definition 8.2.18. [Edge density] The edge density, denoted $\varepsilon(G)$, is defined to be the number $\frac{|E(G)|}{|V(G)|}$. Observe that $\varepsilon(G)$ is also a graph invariant.
Quiz 8.2.19. 1. When does 'deletion of a vertex' reduce edge density? ${ }^{2}$
2. Is $\frac{\delta(G)}{2}$ a lower bound for $\varepsilon(G) ?^{3}$

[^14]3. Suppose that $\varepsilon(G) \geq \delta(G)$. Should we have a vertex v with $\varepsilon(G) \geq d(v)$? ${ }^{1}$

Proposition 8.2.20. Let G be a graph with $\|G\| \geq 1$. Then, G has a subgraph H with $\delta(H)>$ $\varepsilon(H) \geq \varepsilon(G)$.

Proof. If $\varepsilon(G)<\delta(G)$, then we take $H=G$. Otherwise, there is a vertex v with $\varepsilon(G) \geq d(v)$. Put $G_{1}=G-v$. Then, it can be easily verified that $\varepsilon\left(G_{1}\right) \geq \varepsilon(G)$.
If $\varepsilon\left(G_{1}\right)<\delta\left(G_{1}\right)$, then we take $H=G_{1}$. Otherwise, there is a vertex $v \in G_{1}$ with $\varepsilon\left(G_{1}\right) \geq d(v)$. Put $G_{2}=G_{1}-v$. Then, we again have $\varepsilon\left(G_{2}\right) \geq \varepsilon\left(G_{1}\right) \geq \varepsilon(G)$.
Continuing as above, we note that "Initially $\varepsilon(G)>0$. At the i-th stage, we obtained the subgraph G_{i} satisfying $\left|V\left(G_{i}\right)\right|=|G|-i, \varepsilon\left(G_{i}\right) \geq \varepsilon\left(G_{i-1}\right)$. That is, we have been reducing the number of vertices and the corresponding edge densities have been nondecreasing." Hence, this process must stop before we reach a single vertex, as its edge density is 0 .
So, let us assume that the process stops at H. Then, ' $\varepsilon(H)<\delta(H)$ ' must be true, or else, the process would not stop at H and hence the required result follows.

8.3 Isomorphism in graphs

Definition 8.3.1. [Isomorphic graphs] Two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are said to be isomorphic if there is a bijection $f: V \rightarrow V^{\prime}$ such that $u \sim v$ is G if and only if $f(u) \sim f(v)$ in G^{\prime}, for each $u, v \in V$. In other words, an isomorphism is a bijection between the vertex sets which preserves adjacency. We write $G \cong G^{\prime}$ to mean that G is isomorphic to G^{\prime}.

Example 8.3.2. Consider the graphs in Figure 8.9. Then, note that

Figure 8.9: F is isomorphic to G but F is not isomorphic to H

1. the graph F is not isomorphic to H as the independence number, denoted $\alpha(F)$, of F (the maximum size of an independent vertex set) is 3 whereas $\alpha(H)=2$. Alternately, H has a 3 -cycle, whereas F does not.
2. the graph F is isomorphic to G as the map $f: V(F) \rightarrow V(G)$ defined by $f(1)=1$, $f(2)=5, f(3)=3, f(4)=4, f(5)=2$ and $f(6)=6$ gives an isomorphism.
[^15]| Check the adjacency | |
| :--- | :--- |
| F | G |
| $1 \rightarrow 2,4,6$ | $f(1)=1 \rightarrow f(2)=5, f(4)=4, f(6)=6$ |
| $3 \rightarrow 2,4,6$ | $f(3)=3 \rightarrow f(2)=5, f(4)=4, f(6)=6$ |
| $5 \rightarrow 2,4,6$ | $f(5)=2 \rightarrow f(2)=5, f(4)=4, f(6)=6$ |

Thus, f is an isomorphism.
Discussion 8.3.3. [Isomorphism] Let F and G be isomorphic under $f: V(F) \rightarrow V(G)$. Take F. Relabel each vertex $v \in F$ as $f(v)$. Call the new graph F^{\prime}. Then, $F^{\prime}=G$. This is so, as $V\left(F^{\prime}\right)=V(G)$ and $E\left(F^{\prime}\right)=E(G)$ due to the isomorphic nature of the function f.

Practice 8.3.4. Take the graphs F and G of Figure 8.9. Take the isomorphism $f(1)=1$, $f(2)=5, f(3)=3, f(4)=4, f(5)=2$ and $f(6)=6$. Obtain the F^{\prime} as described in Discussion 8.3.3. List $V\left(F^{\prime}\right)$ and $E\left(F^{\prime}\right)$. List $V(G)$ and $E(G)$. Notice that they are the same.

Definition 8.3.5. [Self-complementary] A graph G is called self-complementary if $G \cong \bar{G}$.
Example 8.3.6. 1. Note that the cycle $C_{5}=[0,1,2,3,4,0]$ is self complimentary. An isomorphism from G to \bar{G} is described by $f(i)=2 i(\bmod 5)$.
2. If $|G|=n$ and $G \cong \bar{G}$ then $\|G\|=n(n-1) / 4$. Thus, $n=4 k$ or $n=4 k+1$.

Exercise 8.3.7. 1. Construct a self-complementary graph of order $4 k$.
2. Construct a self-complementary graph of order $4 k+1$.

Definition 8.3.8. A graph invariant is a function which assigns the same value (output) to isomorphic graphs.

Example 8.3.9. Observe that some of the graph invariants are: $|G|,\|G\|, \Delta(G), \delta(G)$, the multiset $\{d(v): v \in V(G)\}, \omega(G)$ and $\alpha(G)$.

Exercise 8.3.10. How many graphs are there with vertex set $\{1,2, \ldots, n\}$? Do you find it easy if we ask for nonisomorphic graphs (try for $n=4$)?

Proposition 8.3.11 (Technique). Let $f: G \rightarrow H$ be an isomorphism and $v \in V(G)$. Then, $G-v \cong H-f(v)$.

Proof. Consider the bijection $g: V(G-v) \rightarrow V(H-f(v))$ described by $g=f_{V(G-v)}$.
Definition 8.3.12. An isomorphism of G to G is called an automorphism.
Example 8.3.13. 1. Identity map is always an automorphism on any graph.
2. Any permutation in S_{n} is an automorphism of K_{n}.
3. There are only two automorphisms of a path P_{8}.

Proposition 8.3.14. Let G be a graph and let $\boldsymbol{\Gamma}(\boldsymbol{G})$ denote the set of all automorphisms of G. Then, $\Gamma(G)$ forms a group under composition of functions.

Proof. Let $V(G)=[n]$ and $\sigma, \mu \in \Gamma(G)$ be two automorphisms. Then,

$$
i j \in E(G) \Leftrightarrow \mu(i) \mu(j) \in E(G) \Leftrightarrow(\sigma \circ \mu)(i)(\sigma \circ \mu)(j) \in E(G) .
$$

Thus, $\sigma \circ \mu$ is an automorphism. Moreover, μ^{-1}, σ^{-1} are indeed automorphisms.
Example 8.3.15. Determine $\Gamma\left(C_{5}\right)$.
Ans: Consider $C_{5}=[1, \ldots, 5,1]$. Note that $\sigma=(2,3,4,5,1)$ is an automorphism. Hence, $\left\{e, \sigma, \sigma^{2}, \ldots, \sigma^{4}\right\} \subseteq \Gamma\left(C_{5}\right)$ as $\sigma^{5}=e$.
Now, let μ be an automorphism with $\mu(1)=i$. Put $\tau=\sigma^{6-i} \mu$. Then, τ is an automorphism with $\tau(1)=1$. If $\tau(2)=2$, then the adjacency structure implies that $\tau(j)=j$ for $j=3,4,5$. Hence, in this case, $\sigma^{6-i} \mu=e$ and thus, $\mu=\sigma^{i-6}=\sigma^{i-1}$.
If $\tau(2) \neq 2$, then $\tau(2)=5, \tau(3)=4$ and so $\tau=(2,5)(3,4)$ is the reflection which fixes 1 . Let us denote the permutation $(2,5)(3,4)$ by ρ. Then, $\Gamma\left(C_{5}\right)$ is the group generated by σ and ρ and hence $\Gamma\left(C_{5}\right)$ has 10 elements.

Example 8.3.16. Notice that $\Gamma\left(C_{5}\right)$ has a subgroup $\Gamma_{1}=\left\{e, \sigma, \sigma^{2}, \ldots, \sigma^{4}\right\}$, with $\sigma^{5}=e$, of order 5 . Let G be a subgraph of C_{5} obtained by deleting some (zero allowed) edges. If $\|G\|=5$, then $|\Gamma(G)|=10$. If $\|G\|=0$, then $|\Gamma(G)|=\left|S_{5}\right|=5$!. If $\|G\|=4$, then $|\Gamma(G)|=2$. If $\|G\|=3$, then $|\Gamma(G)|=2$ or 4 . If $\|G\|=2$, then $|\Gamma(G)|=4$ or 8 . If $\|G\|=1$, then $|\Gamma(G)|=2 \times 3$!. Thus, there is no subgraph of G whose automorphism group is Γ_{1}.
Exercise 8.3.17. 1. Determine the graphs G for which $\Gamma(G)=S_{n}$, the group of all permutations of $1, \ldots, n$.
2. Compute $\Gamma(G)$ for some graphs of small order.
3. Let G be a subgraph of H of the same order. Explore more about the relationship between $\Gamma(G)$ and $\Gamma(H)$.

8.4 Trees

Definition 8.4.1. [Tree and forest] A connected acyclic graph is called a tree. A forest is a graph whose components are trees.

Proposition 8.4.2. Let T be a tree and $u, v \in V(T)$. Then, there is a unique u-v-path in T.
Proof. On the contrary, assume that there are two u-v-paths in T. Then, by Proposition 8.2.9, T has a cycle, a contradiction.

Proposition 8.4.3. Let G be a graph with the property that 'between each pair of vertices there is a unique path'. Then, G is a tree.

Proof. Clearly, G is connected. If G has a cycle $\left[v_{1}, v_{2}, \cdots, v_{k}=v_{1}\right]$, then $\left[v_{1}, v_{2}, \ldots, v_{k-1}\right]$ and [v_{1}, v_{k-1}] are two $v_{1}-v_{k-1}$ paths. A contradiction.

Definition 8.4.4. [Cut vertex] Let G be a connected graph. A vertex v of G is called a cut vertex if $G-v$ is disconnected. Thus, $G-v$ is connected if and only if v is not a cut vertex.

Proposition 8.4.5. Let G be a connected graph with $|G| \geq 2$. If $v \in V(G)$ with $d(v)=1$, then $G-v$ is connected. That is, a vertex of degree 1 is never a cut vertex.

Proof. Let $u, w \in V(G-v), u \neq w$. As G is connected, there is an $u-w$ path P in G. The vertex v cannot be an internal vertex of P, as each internal vertex has degree at least 2. Hence, the path P is available in $G-v$. So, $G-v$ is connected.

Proposition 8.4.6 (Technique). Let G be a connected graph with $|G| \geq 2$ and let $v \in V(G)$. If $G-v$ is connected, then either $d(v)=1$ or v is on a cycle.

Proof. Assume that $G-v$ is connected. If $d_{G}(v)=1$, then there is nothing to show. So, assume that $d(v) \geq 2$. We need to show that v is on a cycle in G.
Let u and w be two distinct neighbors of v in G. As $G-v$ is connected there is a path, say $\left[u=u_{1}, \ldots, u_{k}=w\right]$, in $G-v$. Then, $\left[u=u_{1}, \ldots, u_{k}=w, v, u\right]$ is a cycle in G containing v.

Quiz 8.4.7. Let G be a graph and v be a vertex on a cycle. Can $G-v$ be disconnected? ${ }^{1}$
Definition 8.4.8. [Cut edge] Let G be a graph. An edge e in G is called a cut edge or a bridge if $G-e$ has more connected components than that of G.

Proposition 8.4.9 (Technique). Let G be connected and $e=[u, v]$ be a cut edge. Then, $G-e$ has two components, one containing u and the other containing v.

Proof. If $G-e$ is not disconnected, then by definition, e cannot be a cut edge. So, $G-e$ has at least two components. Let G_{u} (respectively, G_{v}) be the component containing the vertex u (respectively, v). We claim that these are the only components.
Let $w \in V(G)$. Then, G is a connected graph and hence there is a path, say P, from w to u. Moreover, either P contains v as its internal vertex or P doesn't contain v. In the first case, $w \in V\left(G_{v}\right)$ and in the latter case, $w \in V\left(G_{u}\right)$. Thus, every vertex of G is either in $V\left(G_{v}\right)$ or in $V\left(G_{u}\right)$ and hence the required result follows.

Proposition 8.4.10 (Technique). Let G be a graph and e be an edge. Then, e is a cut edge if and only if e is not on a cycle.

Proof. Suppose that $e=[u, v]$ is a cut edge of G. Let F be the component of G that contains e. Then, by Proposition 8.4.9, $F-e$ has two components, namely, F_{u} that contains u and F_{v} that contains v.
Let if possible, $C=\left[u, v=v_{1}, \ldots, v_{k}=u\right]$ be a cycle containing $e=[u, v]$. Then, $[v=$ $\left.v_{1}, \ldots, v_{k}=u\right]$ is an $u-v$ path in $F-e$. Hence, $F-e$ is still connected. A contradiction. Hence, e cannot be on any cycle.
Conversely, let $e=[u, v]$ be an edge which is not on any cycle. Now, suppose that F is the component of G that contains e. We need to show that $F-e$ is disconnected.
Let if possible, there is an u-v-path, say $\left[u=u_{1}, \ldots, u_{k}=v\right]$, in $F-e$. Then, $[v, u=$ $\left.u_{1}, \ldots, u_{k}=v\right]$ is a cycle containing e. A contradiction to e not lying on any cycle.
Hence, e is a cut edge of F. Consequently, e is a cut edge of G.

[^16]Proposition 8.4.11. The center of a tree always consists of a set of at most two vertices.
Proof. Let T be a tree of radius k. Since the center contains at least one vertex, let u be a vertex in the center of T. Now, let v be another vertex in the center. We claim that u is adjacent to v.
Suppose $u \nsim v$. Then, there exists a path from u to v, denoted $P(u, v)$, with at least one internal vertex, say w. Let x be any pendant $(d(x)=1)$ vertex of T. Then, either $v \in P(x, w)$ or $v \notin P(x, w)$. In the latter case, check that $\|P(x, w)\|<\|P(x, v)\| \leq k$.

If $v \in P(x, w)$, then $u \notin P(x, w)$ and $\|P(x, w)\|<\|P(x, u)\| \leq k$. That is, the distance from w to any pendant vertex is less than k. Hence, k is not the radius, a contradiction. Thus, $u v \in T$.
We cannot have another vertex in the center, or else, we will have a C_{3} in T, a contradiction
Theorem 8.4.12. Let G be a graph with $V(G)=[n]$. Then, the following are equivalent.

1. G is a tree.
2. G is a minimal connected graph on n vertices.
3. G is a maximal acyclic graph on n vertices.

Proof. (a) \Rightarrow (b). Suppose that G is a tree. If it is not a minimal connected graph on n vertices, then there is an edge $[u, v]$ such that $G-[u, v]$ is connected. But then, by Theorem 8.4.10, $[u, v]$ is on a cycle in G. A contradiction.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$. Suppose G is a minimal connected graph on n vertices. If G has a cycle, say Γ, then select an edge $e \in \Gamma$. Thus, by Theorem 8.4.10, $G-e$ is still connected graph on n vertices, a contradiction to the fact that G is a minimal connected graph on n vertices. Hence, G is acyclic. Since G is connected, for any new edge e, the graph $G+e$ contains a cycle and hence, G is maximal acyclic graph.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. Suppose G is maximal acyclic graph on n vertices. If G is not connected, let G_{1} and G_{2} be two components of G. Select $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$ and note that $G+\left[v_{1}, v_{2}\right]$ is acyclic graph on n vertices. This contradicts that G is a maximal acyclic graph on n vertices. Thus, G is connected and acyclic and hence is a tree.
Exercise 8.4.13. 1. Show that a graph G is a tree if and only if between each pair of vertices of G there is a unique path.
2. Draw a tree on 8 vertices. Label $V(T)$ as $1, \ldots, 8$ so that each vertex $i \geq 2$ is adjacent to exactly one element of $[i-1]$.

Proposition 8.4.14. Let T be a tree. Then, any graph G with $\delta(G) \geq|T|-1$ has a subgraph $H \cong T$.

Proof. We prove the result by induction on $n=|T|$. The result is trivially true if $n=1$ or 2 . So, let the result be true for every tree on $n-1$ vertices and take a tree T on n vertices. Also, suppose that G is any graph with $\delta(G) \geq|T|-1$.

Let $v \in V(T)$ with $d(v)=1$. Take $u \in V(T)$ such that $u v \in E(T)$. Now, consider the tree $T_{1}=T-v$. Then, $\delta(G) \geq|T|-1=n-1>n-2$. Hence, by induction hypothesis, G has a subgraph H such that $H \cong T_{1}$ under a map, say ϕ. Let $h \in V(H)$ such that $\phi(h)=u$. Since $\delta(G) \geq|T|-1, h$ has a neighbor, say h_{1}, such that h_{1} is not a vertex in H but is a vertex in G. Now, map this vertex to v to get the required result.

Proposition 8.4.15. Let T be a tree on n vertices. Then, T has $n-1$ edges.
Proof. We proceed by induction. Take a tree on $n \geq 2$ vertices and delete an edge e. Then, we get two subtrees T_{1}, T_{2} of order n_{1}, n_{2}, respectively, where $n_{1}+n_{2}=n$. So, $E(T)=E\left(T_{1}\right) \cup E\left(T_{2}\right) \cup$ $\{e\}$. By induction hypothesis $\|T\|=\left\|T_{1}\right\|+\left\|T_{2}\right\|+1=n_{1}-1+n_{2}-1+1=n_{1}+n_{2}-1=n-1$.

Proposition 8.4.16. Let G be a connected graph with n vertices and $n-1$ edges. Then, G is acyclic.

Proof. On the contrary, assume that G has a cycle, say Γ. Now, select an edge $e \in \Gamma$ and note that $G-e$ is connected. We go on selecting edges from G that lie on cycles and keep removing them, until we get an acyclic graph H. Since the edges that are being removed lie on some cycle, the graph H is still connected. So, by definition, H is a tree on n vertices. Thus, by Proposition 8.4.15, $|E(H)|=n-1$. But, in the above argument, we have deleted at least one edge and hence, $|E(G)| \geq n$. This gives a contradiction to $|E(G)|=n-1$.

Proposition 8.4.17. Let G be an acyclic graph with n vertices and $n-1$ edges. Then, G is connected.

Proof. Let if possible, G be disconnected with components $G_{1}, \ldots, G_{k}, k \geq 2$. As G is acyclic, by definition, each G_{i} is a tree on, say $n_{i} \geq 1$ vertices, with $\sum i=1^{k} n_{i}=n$. Thus, $\|G\|=$ $\sum_{i=1}^{k}\left(n_{i}-1\right)=n-k<n-1=\|G\|$, as $k \geq 2$. A contradiction.

Theorem 8.4.18. The following are Equivalent for a graph of order n.
(a) G is a tree.
(b) G is minimal connected.
(c) G is maximal acyclic.
(d) G is acyclic with $\|G\|=n-1$.
(e) G is connected with $\|G\|=n-1$.

Proof. Left as an exercise.
Exercise 8.4.19. Let G be a graph on $n>2$ vertices. If $\|G\|>C(n-1,2)$, is G necessarily connected? Give an 'if and only if' condition for the connectedness of a graph with exactly $C(n-1,2)$ edges.

Proposition 8.4.20. A tree on $n \geq 2$ vertices has at least two pendant vertices.

Proof. Let T be any tree on n vertices. Then, $\sum_{v \in V(T)} d(v)=2\|E(T)\|=2(n-1)=2 n-2$. Hence, by PHP, T has at least two vertices of degree 1.

Definition 8.4.21. Let T be a tree with vertices labeled by n integers, say $[n]$. The Prüfer code P_{T} of T is a sequence X of size $n-2$ created in the following way.

1. Find the largest pendant vertex, say v_{1}. Let u_{1} be the neighbor of v_{1}. Put $X(1)=u_{1}$.
2. Let $T_{1}=T-v_{1}$ and find $X(2)$.
3. Repeat the procedure to obtain $X(3), \ldots, X(n-2)$.

Example 8.4.22. For example, Consider the tree T in Figure 8.10.

Figure 8.10: A tree T on 6 vertices
Then, the above process proceeds as follows.

Step	Pendant v_{i}	Neighbor u_{i}	$\mathbf{P}_{\mathrm{T}}=\mathbf{X}(\mathbf{1}), \mathbf{X}(\mathbf{2}), \ldots$	$\mathrm{T}_{\mathrm{i}}=\mathrm{T}-\mathrm{v}_{\mathrm{i}}$
1	5	2	2	
2	4	2	2,2	$\stackrel{6}{\square} \quad \underbrace{}_{3}$
3	3	2	2,2,2	$1 \quad 6 \quad 2$
4	2	6	2,2,2,6	$1 \quad 6$

EXERCISE 8.4.23. In the above process, prove that $u_{j}=i$, for some j, if and only if $d(i) \geq 2$.
Example 8.4.24. Can I get back the original tree T from the sequence 2, 2, 2, 6 ? Ans: Yes. The process of getting back the original tree is as follows.

1. Plot points $1,2, \ldots, 6$.
2. Since u_{i} is either 2 or 6 , it implies that 2 and 6 are not the pendant vertices. Hence, the pendant vertices in T must be $\{1,3,4,5\}$. Thus, the algorithm implies that the largest pendant 5 must be adjacent to (the first element of the sequence) 2 .
3. At step 1 , the vertex 5 was deleted. Hence, $V\left(T_{1}\right)=\{1,2,3,4,6\}$ with the given sequence $2,2,6$. So, the pendants in T_{1} are $\{1,3,4\}$ and the vertex 4 (largest pendant) is adjacent to 2 .
4. Now, $V\left(T_{2}\right)=\{1,2,3,6\}$ with the sequence as 2,6 . So, 3 is adjacent to 2 .
5. Now, $V\left(T_{3}\right)=\{1,2,6\}$ with the sequence as 6 . So, the pendants in the current T are $\{1,2\}$ and 2 is adjacent to 6 .
6. Lastly, $V\left(T_{4}\right)=\{1,6\}$. As the process ends with K_{2} and we have only two vertices left, they must be adjacent.

The corresponding set of figures are as follows.

Proposition 8.4.25. Let T be a tree on the vertex set $[n]$. Then, $d(v) \geq 2$ if and only if v appears in the Prüfer code P_{T}. Thus, $\left\{v: v \notin P_{T}\right\}$ are precisely the pendant vertices in T.

Proof. Let $d(v) \geq 2$. Since the process ends with an edge, there is a stage, say i, where $d(v)$ decreases strictly. Thus, till at the $(i-1)$-th stage, v was adjacent to a pendant vertex w and at the i-th stage v was deleted and thus, v appears in the sequence.
Conversely, let v appear in the sequence at k-th stage for the first time. Then, the tree T_{k} had a pendant vertex w of highest label that was adjacent to v. Note that $T_{k}-w$ is a tree with at least two vertices. Thus, $d(v) \geq d_{T_{k}}(v) \geq 2$.

Exercise 8.4.26. Prove that in the Prüfer code of T a vertex v appears exactly $d(v)-1$ times. [Hint: If v is the largest pendant adjacent to w and $T^{\prime}=T-v$, then $P_{T}=w, P_{T^{\prime}}$.]

Proposition 8.4.27. Let T and T^{\prime} be two trees on the same vertex set of integers. If $P_{T}=P_{T^{\prime}}$, then $T=T^{\prime}$.

Proof. The statement is trivially true for $|T|=3$. Assume that the statement holds for $3<$ $|T|<n$. Now, let T and T^{\prime} be two trees with vertex set $[n]$ and $P_{T}=P_{T^{\prime}}$. As $P_{T}=P_{T^{\prime}}, T$ and T^{\prime} have the same set of pendants. Further, the largest labeled pendant w is adjacent to the vertex $X(1)$ in both the trees. Thus, $P_{T-w}=P_{T^{\prime}-w}$ and hence, by induction hypothesis $T-w=T^{\prime}-w$. Thus, by PMI, $T=T^{\prime}$.

Proposition 8.4.28. Let S be a set of $n \geq 3$ integers and X be a sequence of length $n-2$ of elements form S. Then, there is a tree T with $V(T)=S$ and $P_{T}=X$.

Proof. Verify the statement for $|T|=3$. Now, let the statement hold for all trees T on $n>3$ vertices and consider a set S of $n+1$ integers and a sequence X of length ($n-1$) of elements of S.

Let $v=\max \{x \in S: x \notin X\}, S^{\prime}=S-v$ and $X^{\prime}=X(2), \ldots, X(n-1)$. Note that as $v \neq X(i)$, for any i, X^{\prime} is a sequence of elements of S^{\prime} of length $n-2$. As $\left|S^{\prime}\right|=n$, by induction hypothesis, there is a tree T^{\prime} with $P_{T^{\prime}}=X^{\prime}$.
Let T be the tree obtained by adding a new pendant v at the vertex $X(1)$ of T^{\prime}. In T^{\prime}, the vertices $X(i)$, for $i \geq 2$, were not available as pendants and now in T the vertex $X(1)$ is also not available as a pendant. (Here some $X(i)^{\prime}$'s may be the same). Let $R^{\prime}=\left\{x \in S^{\prime}: x \notin X^{\prime}\right\}$ be the pendants in T^{\prime}. Then, the set of pendants in T is $\left(R^{\prime} \cup\{v\}\right) \backslash\{X(1)\}$ which equals $\{x \in S: x \notin X\}$. Thus, v is the pendant of T of maximum label. Hence, $P_{T}=X$.

Theorem 8.4.29. [A. Cayley, 1889, Quart. J. Math] Let $n \geq 3$. Then, there are n^{n-2} different trees with vertex set $[n]$.

Proof. Let F be the class of trees on the vertex set $[n]$ and let G be the class of $n-2$-sequences of $[n]$. Note that the function $f: F \rightarrow G$ defined as $f(T)=P_{T}$, the Prüfer code, is a one-one and onto mapping. As $|G|=n^{n-2}$, the required result follows.

Exercise 8.4.30. 1. Find out all nonisomorphic trees of order 7 or less.
2. Show that every automorphism of a tree fixes a vertex or an edge.
3. Give a class of trees T with $|\Gamma(T)|=6$.
4. Let T be a tree, $\sigma \in \Gamma(T), u \in V(T)$ such that $\sigma^{2}(u) \neq u$. Can we have an edge $[u, v] \in T$ such that $\sigma(u)=v$?
5. Let T be a tree with center $\{u\}$ and radius r. Let v satisfy $d(u, v)=r$. Show that r is a pendant.
6. Let T be a tree with $|T|>2$. Let T^{\prime} be obtained from T by deleting the pendant vertices of T. Show that the center of T is the same as the center of T^{\prime}.
7. Let T be a tree with center $\{u\}$ and $\sigma \in \Gamma(T)$. Show that $\sigma(u)=u$.
8. Is it possible to have a tree such that $|\Gamma(T)|=7$?
9. Construct a tree T on vertices $S=\{1,2,3,6,7,8,9\}$ for which $P_{T}=6,3,7,1,2$.
10. Practice with examples: get the Prüfer code from a tree; get the tree from a given code and a vertex set.
11. How many trees of the following forms are there on the vertex set [100]?

12. Show that any tree has at least $\Delta(T)$ leaves (pendant edges).
13. Let T be a tree and T_{1}, T_{2}, T_{3} be subtrees of T such that $T_{1} \cap T_{3} \neq \emptyset, T_{2} \cap T_{3} \neq \emptyset$ and $T_{1} \cap T_{2} \cap T_{3}=\emptyset$. Show that $T_{1} \cap T_{2}=\emptyset$.
14. Let \mathcal{T} be \underline{a} set of subtrees of a tree T. Assume that the trees in \mathcal{T} have nonempty pairwise intersection. Show that their overall intersection is nonempty. Is this true, if we replace T by a graph G ?
15. Recall that a connected graph G is said to be unicyclic if G has exactly one cycle as it's subgraph. Prove that if $|G|=\|G\|$, then G is a unicyclic graph.

8.5 Connectivity

Proposition 8.5.1. Let G be a connected graph on vertex set $[n]$. Then, its vertices can be labeled in such a way that the induced subgraph on the set $[i]$ is connected for $1 \leq i \leq n$.

Proof. If $n=1$, there is nothing to prove. Assume that the statement is true if $n<k$ and let G be a connected graph on the vertex set [k]. If G is a tree, pick any pendant vertex and label it k. If G has a cycle, pick a vertex on a cycle and label it k. In both the case $G-k$ is connected. Now, use the induction hypothesis to get the required result.

Definition 8.5.2. [Separating set] Let G be a graph. Then, a set $X \subseteq V(G) \cup E(G)$ is called a separating set if $G-X$ has more connected components than that of G.

Let X be a separating set of G. Then, 'there exists $u, v \in V(G)$ that lie in the same component of G but lie in different components of $G-X^{\prime}$. If $\{u\} \subseteq V(G)$ is a separating set of G, then u is a cut vertex. If $\{e\} \subseteq E(G)$ is a separating set of G, then it is a bridge/cut edge.

Example 8.5.3. 1. In a tree, each edge is a bridge and each non-pendant vertex is a cut vertex. Is it true for a forest?
2. The graph K_{7} does not have a separating set of vertices. In K_{7}, a separating set of edges must contain at least 6 edges.

Definition 8.5.4. [Vertex connectivity] A graph G is said to be \boldsymbol{k}-connected if $|G|>k$ and G is connected even after deletion of any $k-1$ vertices. The vertex connectivity $\boldsymbol{\kappa}(\boldsymbol{G})$ of a non trivial graph G is the largest k such that G is k-connected. Convention: $\kappa\left(K_{1}\right)=0$.

Example 8.5.5. 1. Each connected graph of order more than one is 1-connected.
2. A 2 -connected graph is also a 1 -connected graph.
3. For a disconnected graph, $\kappa(G)=0$ and for $n>1, \kappa\left(K_{n}\right)=n-1$.
4. The graph G in Figure 8.11 is 2 -connected but not 3 -connected. Thus, $\kappa(G)=2$.

Figure 8.11: graph with vertex connectivity 2
5. The Petersen graph is 3 -connected.

Definition 8.5.6. [Edge connectivity] A graph G is called \boldsymbol{l}-edge connected if $|G|>1$ and $G-F$ is connected for every $F \subseteq E(G)$ with $|F|<l$. The greatest integer l such that G is l-edge connected is the edge connectivity of G, denoted $\boldsymbol{\lambda}(\boldsymbol{G})$. Convention: $\lambda\left(K_{1}\right)=0$.
Example 8.5.7. 1. Note that $\lambda\left(P_{n}\right)=1, \lambda\left(C_{n}\right)=2$ and $\lambda\left(K_{n}\right)=n-1$, whenever $n>1$.
2. Let T be a tree on n vertices. Then, $\lambda(T)=1$.
3. For the graph G in Figure 8.11, $\lambda(G)=3$.
4. For the Petersen graph $G, \lambda(G)=3$.

Exercise 8.5.8. Let $|G|>1$. Show that $\kappa(G)=|G|-1$ if and only if $G=K_{n}$. Can we say the same for $\lambda(G)$?

Theorem 8.5.9. [H. Whitney, 1932] For any graph G, $\kappa(G) \leq \lambda(G) \leq \delta(G)$.
Proof. If G is disconnected or $|G|=1$, then we have nothing to prove. So, let G be connected graph and $|G| \geq 2$. Then, there is a vertex v with $d(v)=\delta(G)$. If we delete all edges incident on v, then the graph is disconnected. Thus, $\delta(G) \geq \lambda(G)$.
Suppose that $\lambda(G)=1$ and $G-u v$ is disconnected with components C_{u} and C_{v}. If $\left|C_{u}\right|=$ $\left|C_{v}\right|=1$, then $G=K_{2}$ and $\kappa(G)=1$. If $\left|C_{u}\right|>1$, then we delete u to see that $\kappa(G)=1$.
If $\lambda(G)=k \geq 2$, then there is a set of edges, say e_{1}, \ldots, e_{k}, whose removal disconnects G. Notice that $G-\left\{e_{1}, \ldots, e_{k-1}\right\}$ is a connected graph with a bridge, say $e_{k}=u v$. For each of e_{1}, \ldots, e_{k-1} select an end vertex other than u or v. Deletion of these vertices from G results in a graph H with $u v$ as a bridge of a connected component. Note that $\kappa(H) \leq 1$. Hence, $\kappa(G) \leq \lambda(G)$.

EXERCISE 8.5.10. Give a lower bound on the number of edges of a graph G on n vertices with vertex connectivity $\kappa(G)=k$.

Theorem 8.5.11. [Chartrand and Harary, 1968] For all integers a, b, c such that $0<a \leq b \leq c$, there exists a graph with $\kappa(G)=a, \lambda(G)=b$ and $\delta(G)=c$.

Proof. Omitted, as it is out of the scope of this book.
Theorem 8.5.12. [Mader, 1972] Every graph G of average degree at least $4 k$ has a k-connected subgraph.

Proof. For $k=1$, the assertion is trivial. So, let $k \geq 2$. Note that

$$
\begin{align*}
n & =|G| \geq \Delta(G) \geq 4 k \geq 2 k-1 \text { and } \tag{8.1}\\
m & =\|G\|=2 k n \geq(2 k-3)(n-k+1)+1 . \tag{8.2}
\end{align*}
$$

We shall use induction to show that if G satisfies Equations (8.1) and (8.2), then G has a k connected subgraph. If $n=2 k-1$, then $m \geq(2 k-3)(n-k+1)+1=(n-2) \frac{(n+1)}{2}+1=\frac{n(n-1)}{2}$. So, G is a graph on n vertices with at least $\frac{n(n-1)}{2}$ edges and hence $G=K_{n}$. Thus, $K_{k+1} \subseteq K_{n}=G$.
Assume $n \geq 2 k$. If v is a vertex with $d(v) \leq 2 k-3$, then we apply induction hypothesis to $G-v$ to get the result. So, let $d(v) \geq 2 k-2$, for each vertex v. If G is k-connected then, we
have nothing to prove. Assume, if possible that G is not k-connected. Then, $G=G_{1} \cup G_{2}$ with $\left|G_{1} \cap G_{2}\right|<k$ and $\left|G_{1}\right|,\left|G_{2}\right|<n$. Thus, both $G_{1}-V\left(G_{2}\right)$ and $G_{2}-V\left(G_{1}\right)$ have at least one vertex and there is no edge between them. As the degree of these vertices is at least $2 k-2$, we have $\left|G_{1}\right|,\left|G_{2}\right| \geq 2 k-1$.
If G_{1} or G_{2} satisfies Equation (8.2), using induction hypothesis, the result follows. Otherwise, $\left\|G_{i}\right\| \leq(2 k-3)\left(\left|G_{i}\right|-k+1\right)$, for $i=1,2$ and hence

$$
m=\|G\| \leq\left\|G_{1}\right\|+\left\|G_{2}\right\| \leq(2 k-3)\left(\left|G_{1}\right|+\left|G_{2}\right|-2 k+2\right) \leq(2 k-3)(n-k+1),
$$

a contradiction to Equation (8.2) and hence the required result follows.
Theorem 8.5.13. [Menger] A graph is k-edge-connected if and only if there are k edge disjoint paths between each pairs of vertices. A graph is k-connected if and only if there are k internally vertex disjoint paths between each pairs of vertices.

Proof. Omitted.

8.6 Eulerian Graphs

Definition 8.6.1. [Eulerian graph] An Eulerian tour in a graph G is a closed walk $\left[v_{0}, v_{1}, \ldots, v_{k}, v_{0}\right.$] such that each edge of the graph appears exactly once in the walk. The graph G is said to be Eulerian if it has an Eulerian tour.

Note that by definition, a disconnected graph is not Eulerian. In this section, the graphs can have loops and multiple edges. The graphs that have a closed walk traversing each edge exactly once have been named "Eulerian graphs" due to the solution of the famous Königsberg bridge problem by Euler in 1736. The problem is as follows: The city Königsberg (the present day Kaliningrad) is divided into 4 land masses by the river Pregel. These land masses are joined by 7 bridges (see Figure 8.12). The question required one to answer "is there a way to start from a land mass that passes through all the seven bridges in Figure 8.12 and return back to the starting land mass"? Euler, rephrased the problem along the following lines: Let the four land masses be denoted by the vertices A, B, C and D of a graph and let the 7 bridges correspond to 7 edges of the graph. Then, he asked "does this graph have a closed walk that traverses each edge exactly once"? He gave a necessary and sufficient condition for a graph to have such a closed walk and thus giving a negative answer to Königsberg bridge problem.
One can also relate the above problem to the problem of "starting from a certain point, draw a given figure with pencil such that neither the pencil is lifted from the paper nor a line is repeated such that the drawing ends at the initial point".

Theorem 8.6.2. [Euler, 1736] A connected graph G is Eulerian if and only if $d(v)$ is even, for each $v \in V(G)$.

Proof. Let G have an Eulerian tour, say $\left[v_{0}, v_{1}, \ldots, v_{k}, v_{0}\right]$. Then, $d(v)=2 r$, if $v \neq v_{0}$ and v appears r times in the tour. Also, $d\left(v_{0}\right)=2(r-1)$, if v_{0} appears r times in the tour. Hence, $d(v)$ is always even.

Figure 8.12: Königsberg bridge problem

Conversely, let G be a connected graph with each vertex having even degree. Let $W=$ $v_{0} v_{1} \cdots v_{k}$ be a longest walk in G without repeating any edge in it. As v_{k} has an even degree it follows that $v_{k}=v_{0}$, otherwise W can be extended. If W is not an Eulerian tour then there exists an edge, say $e^{\prime}=v_{i} w$, with $w \neq v_{i-1}, v_{i+1}$. In this case, $w v_{i} \cdots v_{k}\left(=v_{0}\right) v_{1} \cdots v_{i-1} v_{i}$ is a longer walk, a contradiction. Thus, there is no edge lying outside W and hence W is an Eulerian tour.

Proposition 8.6.3. Let G be a connected graph with exactly two vertices of odd degree. Then, there is an Eulerian walk starting at one of those vertices and ending at the other.

Proof. Let x and y be the two vertices of odd degree and let v be a symbol such that $v \notin V(G)$. Then, the graph H with $V(H)=V(G) \cup\{v\}$ and $E(H)=E(G) \cup\{x v, y v\}$ has each vertex of even degree and hence by Theorem 8.6.2, H is Eulerian. Let $\Gamma=\left[v, v_{1}=x, \ldots, v_{k}=y, v\right]$ be an Eulerian tour. Then, $\Gamma-v$ is an Eulerian walk with the required properties.

Exercise 8.6.4. Let G be a connected Eulerian graph and e be any edge. Show that $G-e$ is connected.

How to find an Eulerian tour (algorithm)?
Start from a vertex v_{0}, move via edge that has not been taken and go on deleting them.
Do not take an edge whose deletion creates a non trivial component not containing v_{0}.

Exercise 8.6.5. Find Eulerian tours for the following graphs.

Theorem 8.6.6. [Finding Eulerian tour] The previous algorithm correctly gives an Eulerian tour whenever, the given graph is Eulerian.

Proof. Let the algorithm start at a vertex, say v_{0}. Now, assume that we are at u with H as the current graph and C as the only non trivial component of H. Thus, $d_{H}(u)>0$. Assume that
the deletion of the edge $u v$ creates a non trivial component not containing v_{0}. Let C_{u} and C_{v} be the components of $C-u v$, containing u and v, respectively.
We first claim that $u \neq v_{0}$. In fact, if $u=v_{0}$, then H must have all vertices of even degree and $d_{H}\left(v_{0}\right) \geq 2$. So, C is Eulerian. Hence, $C-u v$ cannot be disconnected, a contradiction to $C-u v$ having two components C_{u} and C_{v}. Thus, $u \neq v_{0}$. Moreover, note that the only vertices of odd degree in C is u and v_{0}.
Now, we claim that C_{u} is a non trivial component. Suppose C_{u} is trivial. Then, $v_{0} \in C_{v}$, a contradiction to the assumption that the deletion of the edge $u v$ creates a nontrivial component not containing v_{0}. So, C_{u} is non trivial.
Finally, we claim that $v_{0} \in C_{v}$. If possible, let $v_{0} \in C_{u}$. Then, the only vertices in $C-u v$ of odd degree are $v \in C_{v}$ and $v_{0} \in C_{u}$. Hence, $C-u v+v_{0} v$ is a connected graph with each vertex of even degree. So, by Theorem 8.6.2, the graph $C-u v+v_{0} v$ is Eulerian. But, this cannot be true as $v v_{0}$ is a bridge. Thus, $v_{0} \in C_{v}$.
Hence, C_{u} is the newly created non trivial component not containing v_{0}. Also, each vertex of C_{u} has even degree and hence by Theorem 8.6.2, C_{u} is Eulerian. This means, we can take an edge e^{\prime} incident on u and complete an Eulerian tour in C_{u}. So, at u if we take the edge e^{\prime} in place of the edge e, then we will not create a non trivial component not containing v_{0}.
Thus, at each stage of the algorithm either $u=v_{0}$ or there is a path from u to v_{0}. Moreover, this is the only non trivial connected component. When the algorithm ends, we must have $u=v_{0}$. Because, as seen above, the condition $u \neq v_{0}$ gives the existence of an edge that is incident on u and that can be traversed (as $d_{H}(u)$ is odd). Hence, if $u \neq v_{0}$, the algorithm cannot stop. Thus, when algorithm stops $u=v_{0}$ and all components are trivial.

Exercise 8.6.7. Apply the algorithm to graphs of Exercise 8.6.5. Also, create connected graphs such that each of its vertex has even degree and apply the above algorithm.

Definition 8.6.8. [bipartite graph] A graph $G=(V, E)$ is said to be bipartite if $V=V_{1} \cup V_{2}$ such that $\left|V_{1}\right|,\left|V_{2}\right| \geq 1, V_{1} \cap V_{2}=\emptyset$ and $\left\|\left\langle V_{1}\right\rangle\right\|=0=\left\|\left\langle V_{2}\right\rangle\right\|$. The complete bipartite graph $K_{m, n}$ is shown below. Notice that $K_{m, n}=\bar{K}_{m}+\bar{K}_{n}$.

Exercise 8.6.9. 1. Give a necessary and sufficient condition on m and n so that $K_{m, n}$ is Eulerian.
2. Each of the 8 persons in a room has to shake hands with every other person as per the following rules:
(a) The handshakes should take place sequentially.
(b) Each handshake (except the first) should involve someone from the previous handshake.
(c) No person should be involved in 3 consecutive handshakes.

Is there a way to sequence the handshakes so that these conditions are all met?
3. Let G be a connected graph. Then, G is an Eulerian graph if and only if the edge set of G can be partitioned into cycles.

8.7 Hamiltonian Graphs

Definition 8.7.1. [Hamiltonian] A cycle in G is said to be Hamiltonian if it contains all vertices of G. If G has a Hamiltonian cycle, then G is called a Hamiltonian graph. Finding a nice characterization of a Hamiltonian graph is an unsolved problem.
Example 8.7.2. 1. For each positive integer $n \geq 3$, the cycle C_{n} is Hamiltonian.

The dodecahedron graph

The Petersen graph

Figure 8.13: A Hamiltonian and a non-Hamiltonian graph
2. The graphs corresponding to all platonic solids are Hamiltonian.
3. The Petersen graph is a non-Hamiltonian Graph (the proof appears below).

Proposition 8.7.3. The Petersen graph is not Hamiltonian.
Proof. Suppose that the Petersen graph, say G, is Hamiltonian. Also, each vertex of G has degree 3 and hence, $G=C_{10}+M$, where M is a set of 5 chords in which each vertex appears as an endpoint. We assume that $C_{10}=[1,2, \ldots, 10,1]$. Now, consider the vertices 1,2 and 3 .

Since, $g(G)=5$, the vertex 1 can only be adjacent to one of the vertices 5,6 or 7 . Hence, if 1 is adjacent to 5 , then the third vertex that is adjacent to 10 creates cycles of length 3 or 4 . Similarly, if 1 is adjacent to 7 , then there is no choice for the third vertex that can be adjacent to 2 . So, let 1 be adjacent to 6 . Then, 2 must be adjacent to 8 . In this case, note that there is no choice for the third vertex that can be adjacent to 3 . Thus, the Petersen graph is non-Hamiltonian.

Theorem 8.7.4. Let G be a Hamiltonian graph. Then, for $S \subseteq V(G)$ with $S \neq \emptyset$, the graph $G-S$ has at most $|S|$ components.

Proof. Note that by removing k vertices from a cycle, one can create at most k connected components. Hence, the required result follows.

Theorem 8.7.5. [Dirac, 1952] Let G be a graph with $|G|=n \geq 3$ and $d(v) \geq n / 2$, for each $v \in V(G)$. Then, G is Hamiltonian.

Proof. Let is possible, G be disconnected. Then, G has a component, say H, with $|V(H)|=k \leq$ $n / 2$. Hence, $d(v) \leq k-1<n / 2$, for each $v \in V(H)$. A contradiction to $d(v) \geq n / 2$, for each $v \in V(G)$. Now, let $P=\left[v_{1}, v_{2}, \cdots, v_{k}\right]$ be a longest path in G. Since P is the longest path, all neighbors of v_{1} and v_{k} are in P.
We claim that there exists an i such that $v_{1} \sim v_{i}$ and $v_{i-1} \sim v_{k}$. Otherwise, for each $v_{i} \sim v_{1}$, we must have $v_{i-1} \nsim v_{k}$. Then, $\left|N\left(v_{k}\right)\right| \leq k-1-\left|N\left(v_{1}\right)\right|$. Hence, $\left|N\left(v_{1}\right)\right|+\left|N\left(v_{k}\right)\right| \leq k-1<n$, a contradiction to $d(v) \geq n / 2$, for each $v \in V(G)$. So, the claim is valid and hence, we have a cycle $\tilde{P}:=v_{1} v_{i} v_{i+1} \cdots v_{k} v_{i-1} \cdots v_{1}$ of length k.
We now prove that \tilde{P} gives a Hamiltonian cycle. Suppose not. Then, there exists $v \in V(G)$ such that v is outside P and v is adjacent to some v_{j}. Note that in this case, P cannot be the path of longest length, a contradiction. Thus, the required result follows.

Theorem 8.7.6. [Ore, 1960] Let G be a graph on $n \geq 3$ vertices such that $d(u)+d(v) \geq n$, for every pair of nonadjacent vertices u and v. Then, G is Hamiltonian.

Proof. Exercise.
EXERCISE 8.7.7. Let u and v be two vertices such that $d(u)+d(v) \geq|G|$, whenever $u v \notin E(G)$. Prove that G is Hamiltonian if and only if $G+u v$ is Hamiltonian.

Definition 8.7.8. [closure of a graph] The closure of a graph G, denoted $C(G)$, is obtained by repeatedly choosing pairs of nonadjacent vertices u, v such that $d(u)+d(v) \geq n$ and adding edges between them.

Proposition 8.7.9. The closure of G is unique.
Proof. Let K be a closure obtained by adding edges $e_{1}=u_{1} v_{1}, \ldots, e_{k}=u_{k} v_{k}$ sequentially and F be a closure obtained by adding edges $f_{1}=x_{1} y_{1}, \ldots, f_{r}=x_{r} y_{r}$ sequentially. Let e_{i} be the first edge in the e-sequence which does not appear in the f-sequence. Put $H=G+e_{1}+\cdots+e_{i-1}$. Then, $e_{i}=u_{i} v_{i}$ implies that $e_{i} \notin E(H)$ and $d_{H}\left(u_{i}\right)+d_{H}\left(v_{i}\right) \geq n$. Also, H is a subgraph of F and
hence, $d_{F}\left(u_{i}\right)+d_{F}\left(v_{i}\right) \geq n$. Moreover, $e_{i}=u_{i} v_{i} \notin F$ as e_{i} does not appear in the f-sequence. Thus, F cannot be a closure and therefore the required result follows.

Exercise 8.7.10. Let G be a graph on $n \geq 3$ vertices.

1. If G has a cut vertex, then prove that $C(G) \neq K_{n}$.
2. Then, prove a generalization of Dirac's theorem: If the closure $C(G) \cong K_{n}$, then G is Hamiltonian.

Theorem 8.7.11. Let $d_{1} \leq \cdots \leq d_{n}$ be the vertex degrees of G. Suppose that, for each $k<n / 2$ with $d_{k} \leq k$, the condition $d_{n-k} \geq n-k$ holds. Then, prove that G is Hamiltonian.

Proof. We show that under the above condition $H=C(G) \cong K_{n}$. On the contrary, assume that there exist a pair of vertices $u, v \in V(G)$ such that $u v \notin E(G)$ and $d_{H}(u)+d_{H}(v) \leq n-1$. Among the above pairs, choose a pair $u, v \in V(G)$ such that $u v \notin E(H)$ and $d_{H}(u)+d_{H}(v)$ is maximum. Assume that $d_{H}(v) \geq d_{H}(u)=k$ (say). Clearly, $k<n / 2$.
Now, let $S_{v}=\{x \in V(H) \mid x v \notin E(H), x \neq v\}$ and $S_{u}=\{w \in V(H) \mid w u \notin E(H), w \neq u\}$. Therefore, the assumption that $d_{H}(u)+d_{H}(v)$ is the maximum among each pair of vertices u, v with $u v \notin E(H)$ and $d_{H}(u)+d_{H}(v) \leq n-1$ implies that $\left|S_{v}\right|=n-1-d_{H}(v) \geq d_{H}(u)=k$ and for each $x \in S_{v}, d_{H}(x) \leq d_{H}(u)=k$. So, there are at least k vertices in H (elements of S_{v}) with degrees at most k.
Also, for any $w \in S_{u}$, note that the choice of the pair u, v implies that $d_{H}(w) \leq d_{H}(v) \leq$ $n-1-d_{H}(u)=n-1-k<n-k$. Moreover, $\left|S_{u}\right|=n-1-k$. Further, the condition $d_{H}(u)+d_{H}(v) \leq n-1, d_{H}(v) \geq d_{H}(u)=k$ and $u \notin S_{u}$ implies that $d_{H}(u) \leq n-1-d_{H}(v) \leq$ $n-1-k<n-k$. So, there are $n-k$ vertices in H with degrees less than $n-k$.
Therefore, if $d_{1}^{\prime} \leq \cdots \leq d_{n}^{\prime}$ are the vertex degrees of H, then we observe that there exists a $k<n / 2$ for which $d_{k}^{\prime} \leq k$ and $d_{n-k}^{\prime}<n-k$. As $k<n / 2$ and $d_{i} \leq d_{i}^{\prime}$, we get a contradiction.

Exercise 8.7.12. Complete an alternate proof of Theorem 8.7.11. Let R denote the property: R : 'If $d_{k} \leq k$ then $d_{n-k} \geq n-k$, for each $k<n / 2$ '.
We know that G has this property.

1. Let e be an edge not in G. Show that $G+e$ also has the property. What about the closure $H:=C(G)$ of G ?
2. Assume that $\max \{d(u)+d(v): u, v \in H$ are not adjacent $\} \leq n-2$. Let e be an edge not in H. Does $H+e$ have property R ? Is $C(H+e)=H+e$?
3. In view of the previous observations assume that G is an edge maximal graph with property R which is not Hamiltonian. Do you have $C(G)=G$? Show that there are some k vertices having degree at most k and some $n-k$ vertices having degree less than $n-k$. Does that contradict R ?

Definition 8.7.13. [Line graph] The line graph H of a graph G is a graph with $V(H)=E(G)$ and $e_{1}, e_{2} \in V(H)$ are adjacent in H if e_{1} and e_{2} share a common vertex/endpoint.

Example 8.7.14. Verify the following:

1. Line graph of C_{5} is C_{5}.
2. Line graph of P_{5} is P_{4}.
3. Line graph of any graph G contains a complete subgraph of size $\Delta(G)$.

Exercise 8.7.15. 1. Let G be a connected Eulerian graph. Then, show that the line graph of G is Hamiltonian. Is the converse true?
2. What can you say about the clique number of a line graph?

Theorem 8.7.16. A connected graph G is isomorphic to it's line graph if and only if $G=C_{n}$, for some $n \geq 3$.

Proof. If G is isomorphic to its line graph, then $|G|=\|G\|$. Thus, G is a unicyclic graph. Let $\left[v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}=v_{1}\right]$ form the cycle in G. Then, the line graph of G contains a cycle $P=\left[v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k} v_{1}\right]$. We now claim that $d_{G}\left(v_{i}\right)=2$.
Suppose not and let $d_{G}\left(v_{1}\right) \geq 3$. So, there exists a vertex $u \notin\left\{v_{2}, v_{k}\right\}$ such that $u \sim v_{1}$. In that case, the line graph of G contains the triangle $T=\left[v_{1} v_{2}, v_{1} v_{k}, v_{1} u\right]$ and $P \neq T$. Thus, the line graph is not unicyclic, a contradiction.
Exercise 8.7.17. 1. Determine the closure of G.
2. Show that H is not Hamiltonian.

3. Give a necessary and sufficient condition on $m, n \in \mathbf{N}$ so that $K_{m, n}$ is Hamiltonian.
4. Show that any graph G with $|G| \geq 3$ and $\|G\| \geq C(n-1,2)+2$ is Hamiltonian.
5. Show that for any $n \geq 3$ there is a graph H with $\|G\|=C(n-1,2)+1$ that is not Hamiltonian. But, prove that all such graphs H admit a Hamiltonian path (a path containing all vertices of H).

8.8 Bipartite Graphs

Definition 8.8.1. [2-colorable graphs] A graph is 2-colorable if it's vertices can be colored with two colors in a way that adjacent vertices get different colors.

Lemma 8.8.2. Let P and Q be two v-w-paths in G such that length of P is odd and length of Q is even. Then, G contains an odd cycle.

Proof. Suppose P, Q have an inner vertex x (a vertex other than v, w) in common. Then, one of $P(v, x), P(x, w)$ has odd length and the other is even, say, $P(v, x)$ is odd. If the lengths of $Q(v, x)$ and $Q(x, w)$ are both odd then we consider the x - w-paths $P(x, w)$ and $Q(x, w)$, otherwise we consider the paths $P(v, x)$ and $Q(v, x)$.
In view of the above argument, we may assume that P, Q have no inner vertex in common. In that case it is clear that $P \cup Q$ is an odd cycle.

Theorem 8.8.3. Let G be a connected graph with at least two vertices. Then, the following statements are equivalent.

1. G is 2 colorable.
2. G is bipartite.
3. G does not have an odd cycle.

Proof. Part $1 \Rightarrow$ Part 2. Let G be 2-colorable. Let V_{1} be the set of red vertices and V_{2} be the set of blue vertices. Clearly, G is bipartite with partition V_{1}, V_{2}.
Part $2 \Rightarrow$ Part 1. Color the vertices in V_{1} with red color and that of V_{2} with blue color to get the required 2 colorability of G.
Part $2 \Rightarrow$ Part 3. Let G be bipartite with partition V_{1}, V_{2}. Let $v_{0} \in V_{1}$ and suppose $\Gamma=$ $v_{0} v_{1} v_{2} \cdots v_{k}=v_{0}$ is a cycle. It follows that $v_{1}, v_{3}, v_{5} \cdots \in V_{2}$. Since, $v_{k} \in V_{1}$, we see that k is even. Thus, Γ has an even length.
Part $3 \Rightarrow$ Part 2. Suppose that G does not have an odd cycle. Pick any vertex v. Define $V_{1}=\{w \mid$ there is a path of even length from v to $w\}$ and $V_{2}=\{w \mid$ there is a path of odd length from v to $w\}$. Clearly, $v \in V_{1}$. Also, G does not have an odd cycle implies that $V_{1} \cap V_{2}=\emptyset$. As G is connected each w is either in V_{1} or in V_{2}.
Let $x \in V_{1}$. Then, there is an even path $P(v, x)$ from v to x. If $x y \in E(G)$, then we have a v - y-walk of odd length. Deleting all cycles from this walk, we have an odd $v-y$-path. Thus, $y \in V_{2}$. Similarly, if $x \in V_{2}$ and $x y \in E$, then $y \in V_{1}$. Thus, G is bipartite with parts V_{1}, V_{2}.

Exercise 8.8.4. 1. There are 15 women and some men in a room. Each man shook hands of exactly 6 women and each woman shook hands of exactly 8 men. How many men are there in the room?
2. How do you test whether a graph is bipartite or not?

8.9 Matching

Definition 8.9.1. [Matching in a graph] A matching in a graph G is an independent set of edges. A maximum matching is a matching with maximum number of edges. A vertex v is saturated by a matching M if there is an edge $e \in M$ incident on v. A matching is a perfect matching if every vertex is saturated.

Example 8.9.2. 1. In Figure 8.14, $M_{1}=\left\{u_{1} u_{2}\right\}$ is a matching. So, is $M_{2}=\{e\}$, where e is any edge. The set $M_{3}=\left\{u_{3} u_{2}, u_{4} u_{7}\right\}$ is also a matching. The set $M_{4}=\left\{u_{1} u_{2}, u_{4} u_{5}, u_{6} u_{7}\right\}$

Figure 8.14: A graph
is also a matching and it is maximum (why?). Can you give another maximum matching?
2. Any non trivial graph G has a maximum matching.
3. Vertices that are saturated for M_{3} are $\left\{u_{2}, u_{3}, u_{4}, u_{7}\right\}$.
4. Any graph with a perfect matching must have even order. The Figure 8.14 cannot have a perfect matching.

Definition 8.9.3. [Alternating path] Let M be a matching in G. A path P is called M alternating if its edges are alternately from M and from $G-M$. An M-alternating path with two unmatched vertices as end points is called \boldsymbol{M}-augmenting. Convention: Each path of length 1 in M is M-alternating.

Example 8.9.4. Consider Figure 8.14.

1. The path $\left[u_{1}, u_{2}\right]$ is M_{1}-alternating. The only path of length 2 which is M_{1}-alternating is $\left[u_{1}, u_{2}, u_{3}\right]$.
2. The path $\left[u_{1}, u_{2}, u_{4}, u_{7}\right]$ is not M_{3}-alternating. But, $\left[u_{2}, u_{3}, u_{4}, u_{7}\right]$ is M_{3}-alternating.
3. The path $P=\left[u_{1}, u_{2}, u_{3}, u_{4}, u_{7}, u_{6}\right]$ is M_{3}-alternating and M_{3}-augmenting. This gives us a way to get a larger (in size) matching M_{5} using M_{3} : throw away the even edges of P from M_{3} and add the odd edges; i.e., $M_{5}=M_{3}-\left\{u_{2} u_{3}, u_{4} u_{7}\right\}+\left\{u_{1} u_{2}, u_{3} u_{4}, u_{7} u_{6}\right\}$.

Theorem 8.9.5. [Berge, 1957] A matching M is maximum if and only if there is no M augmenting path in G.

Proof. Let $M=\left\{u_{1} v_{1}, \ldots, u_{k} v_{k}\right\}$ be a maximum matching. If there is an M-augmenting path P, then $(P \backslash M) \cup M \backslash P$ is a larger matching, a contradiction. Conversely, suppose that M is not maximum. Let M^{*} be a maximum matching. Consider the graph $H=\left(V, M \cup M^{*}\right)$. Note that $d_{H}(v) \leq 2$, for each vertex in H. Thus, H is a collection of isolated vertices, paths and cycles. Since a cycle contains equal number of edges of M and M^{*}, there is a path P which contains more number of edges of M^{*} than that of M. Then, P is an M-augmenting path. A contradiction.

Exercise 8.9.6. How do we find a maximum matching in a graph G.
Example 8.9.7. Can we find a matching that saturates all vertices in the graph given below?

Ans: No. Let X be the given graph and take $S=\{1,2,3\}$. If there is such a matching then $|N(S)|$ should at least be $|S|$. But this is not the case with this graph.
Question: What if $|N(S)|$ were at least $|S|$, for each $S \subseteq X$?
Theorem 8.9.8. [Hall, 1935] Let $G=(X \cup Y, E)$ be a bipartite graph. Then, there is a matching that saturates all vertices in X if and only if for all $S \subseteq X,|N(S)| \geq|S|$.

Proof. If there is such a matching, then obviously $|S| \leq|N(S)|$, for each subset S of X. Conversely, suppose that $|N(S)| \geq|S|$, for each $S \subseteq X$. Let if possible, M^{*} be a maximum matching that does not saturate $x \in X$.
As $|N(\{x\})| \geq|\{x\}|$, there is a $y \in Y$ such that $x y \notin M^{*}$. Since M^{*} cannot be extended, y must have been matched to some $x_{1} \in X$.
Now consider $N\left(\left\{x, x_{1}\right\}\right)$. It has a vertex y_{1} which is adjacent to either x or x_{1} or both by an edge not in M^{*}. Again the condition that M^{*} cannot be extended implies that y_{1} must have been matched to some $x_{2} \in X$. Continuing as above, we see that this process never stops and thus, G has infinitely many vertices, which is not true. Hence, M^{*} saturates each $x \in X$.

Corollary 8.9.9. Let G be a k-regular $(k \geq 1)$ bipartite graph. Then, G has a perfect matching.
Proof. Let X and Y be the two parts. Since G is k-regular $|X|=|Y|$. Let $S \subseteq X$ and E be the set of edges with an end vertex in S. Then $k|S|=|E| \leq \sum_{v \in N(S)} d(v)=k|N(S)|$. Hence, we see that for each $S \subseteq X,|S| \leq|N(S)|$ and thus, by Hall's theorem the required result follows.

Definition 8.9.10. [Covering of a graph] Let G be a graph. Then, $S \subseteq V(G)$ is called a covering of G if each edge has at least one end vertex in S. A minimum covering of G is a covering of G that has minimum cardinality.

Exercise 8.9.11. 1. Show that for any graph G the size of a minimum covering is $n-\alpha(G)$.
2. Characterize G in terms of it's girth if the size of a minimum covering is $|G|-2$.

Proposition 8.9.12. Let G be a graph. If M is a matching and K is a covering of G, then $|M| \leq|K|$. If $|M|=|K|$, then M is a maximum matching and K is a minimum covering.

Proof. By definition, the proof of the first statement is trivial. To prove the second statement, suppose that $|M|=|K|$ and M is not a maximum matching. Let M^{*} be a matching of G with $\left|M^{*}\right| \geq|M|$. Then, using the first statement, we have $|K| \geq\left|M^{*}\right|>|M|$. Thus, M is maximum. As each covering must have at least $|M|$ elements, we see that K is a minimum covering.

Exercise 8.9.13. Let $G=K_{n}, n \geq 3$. Then, determine

1. the cardinality of a maximum matching?
2. the cardinality of a minimum covering?

Is the converse of Proposition 8.9.12 necessarily true? Can you guess the class of graphs for which the converse of Proposition 8.9.12 is true?

Theorem 8.9.14. [Konig, 1931] Let M^{*} be a maximum matching in a bipartite graph G and let K^{*} be a minimum covering. Then, $\left|M^{*}\right|=\left|K^{*}\right|$.

Proof. Let $V=X \cup Y$ be the bipartition of V and let M be a maximum matching. Let U be the vertices in X that are not saturated by M and let Z be the set of vertices reachable from U by an M-alternating path.
Put $S=Z \cap X, T=Z \cap Y$ and $K=T \cup(X \backslash S)$. Then, $U \subseteq Z \subseteq X \cup Y$. Also, every vertex in T is saturated by M (as M is a maximum matching) and $N(S)=T$. Further, a vertex $v \in X \backslash S$ is matched to some vertex $y \notin T$. Thus, $|K|=|T \cup(X \backslash S)| \leq|M|$. If K is not a covering, then there is an edge $x y \in G$ with $x \in S$ and $y \notin T$, a contradiction to $N(S)=T$. Thus, K is a covering and hence, using $|K| \leq|M|$ and Proposition 8.9.12, we get $|K|=|M|$. Furthermore, by Proposition 8.9.12, we also see that K is a minimum covering.

EXERCISE 8.9.15. How many perfect matchings are there in a labeled $K_{2 n}$?

8.10 Ramsey Numbers

Recall that in any group of 6 or more persons either we see 3 mutual friends or we see 3 mutual strangers. Expressed using graphs it reads'let $G=(V, E)$ be a graph with $|V| \geq 6$. Then, either $K_{3} \subseteq G$ or $\bar{K}_{3} \subseteq G$.

Definition 8.10.1. [Ramsey number] The Ramsey number $\boldsymbol{r}(\boldsymbol{m}, \boldsymbol{n})$ is the smallest natural number k such that any graph G on k vertices either has a K_{m} or a \bar{K}_{n} as it's subgraph.

Example 8.10.2. As C_{5} does not have K_{3} or \bar{K}_{3} as it's subgraph, $r(3,3)>5$. But, using the first paragraph of this section, we get $r(3,3) \leq 6$ and hence, $r(3,3)=6$. It is known that $r(3,4)=9$ (see the text by Harary for a table).
Proposition 8.10.3. Let G be a graph on 9 vertices. Then, either $K_{4} \subseteq G$ or $\bar{K}_{3} \subseteq G$.
Proof. Assume that $|V|=9$. Then, we need to consider three cases.
Case I. There is a vertex a with $d(v) \leq 4$. Then, $\left|N(a)^{c}\right| \geq 4$. If all vertices in $N(a)^{c}$ are pairwise adjacent, then $K_{4} \subseteq G$. Otherwise, there are two nonadjacent vertices, say $b, c \in N(a)^{c}$. In that case a, b, c induces the graph \bar{K}_{3}.

Case II. There is a vertex a with $d(a) \geq 6$. If $\langle N(a)\rangle$ has a \bar{K}_{3}, we are done. Otherwise, $r(3,3)=6$ implies that $\langle N(a)\rangle$ has a K_{3} with vertices, say, b, c, d. In that case a, b, c, d induces the graph K_{4}.
Case III. Each vertex has degree 5 . This case is not possible as $\sum d(v)$ should be even.
Exercise 8.10.4. Can you draw a graph on 8 vertices which does not have K_{3}, \bar{K}_{4} in it?
Theorem 8.10.5. [Erdos \& Szekeres, 1935] Let $m, n \in \mathbb{N}$. Then, $r(m, n) \leq r(m-1, n)+$ $r(m, n-1)$.

Proof. Let $p=r(m-1, n)$ and $q=r(m, n-1)$. Now, take any graph G on $p+q$ vertices and take a vertex a. If $d(a) \geq p$, then $\langle N(a)\rangle$ has either a subgraph K_{m-1} (and K_{m-1} together with a gives K_{m}) or a subgraph $\overline{K_{n}}$. Otherwise, $\left|N(a)^{c}\right| \geq q$. In this case, $\left\langle N(a)^{c}\right\rangle$ has either a subgraph K_{m} or a subgraph $\bar{K}_{n-1}\left(\bar{K}_{n-1}\right.$ together with a gives $\left.\bar{K}_{n}\right)$.

8.11 Degree Sequence

Definition 8.11.1. [Degree sequence] The degree sequence of a graph of order n is the tuple $\left(d_{1}, \ldots, d_{n}\right)$ where $d_{1} \leq \cdots \leq d_{n}$. A nondecreasing sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers is graphic if there is a graph whose degree sequence is d.

Exercise 8.11.2. Show that $(1,1,3,3)$ is not graphic.
Theorem 8.11.3. Fix $n \geq 1$ and the natural numbers $d_{1} \leq \cdots \leq d_{n}$. Then, $d=\left(d_{1}, \ldots, d_{n}\right)$ is the degree sequence of a tree on n vertices if and only if $\sum d_{i}=2 n-2$.

Proof. If $d=\left(d_{1}, \ldots, d_{n}\right)$ is the degree sequence of a tree on n vertices then $\sum d_{i}=2|E(T)|=$ $2(n-1)=2 n-2$.
Conversely, let $d_{1} \leq \cdots \leq d_{n}$ be a sequence of natural numbers with $\sum d_{i}=2 n-2$. We use induction to show that $d=\left(d_{1}, \ldots, d_{n}\right)$ is the degree sequence of a tree on n vertices. For $n=1,2$, the result is trivial. Let the result be true for all $n<k$ and let $d_{1} \leq \cdots \leq d_{k}, k>2$, be natural numbers with $\sum d_{i}=2 k-2$. Since, $\sum d_{i}=2 k-2$, we must have $d_{1}=1$ and $d_{k}>1$. Then, we note that $d_{2}^{\prime}=d_{2}, \cdots, d_{k-1}^{\prime}=d_{k-1}$ and $d_{k}^{\prime}=d_{k}-1$ are natural numbers such that $\sum d_{i}^{\prime}=2(k-1)-2$. Hence, by induction hypothesis, there is a tree T^{\prime} on vertices $2, \cdots, k-1, k$ with degrees d_{i}^{\prime} 's. Now, introduce a new vertex 1 and add the edge $\{1, k\}$ to get a tree T that has the required degree sequence.

Theorem 8.11.4. [Havel-Hakimi, 1962] The degree sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ is graphic if and only if the sequence $d_{1}, d_{2}, \ldots, d_{n-d_{n}-1}, d_{n-d_{n}}-1, \ldots, d_{n-1}-1$ is graphic.

Proof. If the later sequence is graphic then we introduce a new vertex and make it adjacent to the vertices whose degrees are $d_{n-d_{n}}-1, \ldots, d_{n-1}-1$. Hence, the sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ is graphic. Now, assume that d is graphic and G is a graph with degree sequence d. Let n be a vertex with $d_{n}=k$ and suppose that the vertices $1, \ldots, k$ are adjacent to n in G. Also, let $\operatorname{deg}(1)$ be the minimum among $\operatorname{deg}(1), \ldots, \operatorname{deg}(k)$. If $\operatorname{deg}(1) \geq \operatorname{deg}(k+1), \ldots, \operatorname{deg}(n-1)$, then
$G-n$ is the required graph. So, let $\operatorname{deg}(k+1)>\operatorname{deg}(1)$. Then, $k+1$ has a neighbor $v \neq 1, n$ with $v \nsim 1$. Now, consider the graph $G^{\prime}=G-\{k+1, v\}+\{n, k+1\}+\{1, v\}-\{1, n\}$. Then, G^{\prime} a also has d as it's degree sequence with a better degree of neighbors. Note that the average increases by at least $\frac{1}{k}$. Obviously the average cannot go beyond $n-1$. Thus, repeating the above procedure a finite number of times, the required result follows.

Exercise 8.11.5. 1. How many different degree sequences are possible on a graph with 5 vertices? List all the degree sequences and draw a graph for each one. (Include connected and disconnected graphs.)
2. Which of the sequences below are graphic? Draw the graph or supply an argument.
(a) $(2,2,3,4,4,5)$
(b) $(1,2,2,3,3,4)$
(c) $\left(2^{2}, 3^{6}, 4^{2}\right)=(2,2,3,3,3,3,3,3,4,4)$
3. If two graphs have the same degree sequence, are they necessarily isomorphic?
4. If two graphs are isomorphic, is it necessary that they have the same degree sequence?

8.12 Planar Graphs

Definition 8.12.1. [Embedding, Planar graph] A graph is said to be embedded on a surface S when it is drawn on S so that no two edges intersect. A graph is said to be planar if it can be embedded on the plane. A plane graph is a graph which is embedded on the plane.

K_{5}-Non-planar

$K_{3,3}$-Non-planar

$K_{4} \quad K_{4}$ - Planar embedding

Figure 8.15: Planar and non-planar graphs

Example 8.12.2. 1. A tree is embed-able on a plane and when it is embedded we have only one face, the exterior face.
2. Any cycle $C_{n}, n \geq 3$ is planar and any plane representation of C_{n} has two faces.
3. The planar embedding of K_{4} is given in Figure 8.15.
4. Draw a planar embedding of $K_{2,3}$.
5. Draw a planar embedding of the three dimensional cube.

Definition 8.12.3. [Face of a planar embedding] Consider a planar embedding of a graph G. The regions on the plane defined by this embedding are called faces/regions of G. The unbounded face/region is called the exterior face (see Figure 8.16).

Figure 8.16: Planar graphs with labeled faces to understand the Euler's theorem
The faces of the planar graph X_{1} and their corresponding edges are listed below.

Face	Corresponding Edges
f_{1}	$\{9,8\},\{8,9\},\{8,2\},\{2,1\},\{1,2\},\{2,7\},\{7,2\},\{2,3\},\{3,4\},\{4,6\},\{6,4\},\{4,5\}$, $\{5,4\},\{4,12\},\{12,4\},\{4,11\},\{11,10\},\{10,13\},\{13,14\},\{14,10\},\{10,8\},\{8,9\}$
f_{2}	$\{10,13\},\{13,14\},\{14,10\}$
f_{3}	$\{4,11\},\{11,10\},\{10,4\}$
f_{4}	$\{2,3\},\{3,4\},\{4,10\},\{10,8\},\{8,2\},\{2,15\},\{15,2\}$

From the table, we observe that each edge of X_{1} appears in two faces. This can be easily observed for the faces that don't have pendant vertices (see the faces f_{2} and f_{3}). In faces f_{1} and f_{4}, there are a few edges which are incident with a pendant vertex. Observe that the edges that are incident with a pendant vertex, e.g., the edges $\{2,15\},\{8,9\}$ and $\{1,2\}$ etc., appear twice when traversing a particular face. This observation leads to the proof of Euler's theorem for planar graphs which is the next result.

Theorem 8.12.4. [Euler formula] Let G be a connected plane graph with f as the number of faces. Then,

$$
\begin{equation*}
|G|-\|G\|+f=2 . \tag{8.3}
\end{equation*}
$$

Proof. We use induction on f. Let $f=1$. Then, G cannot have a subgraph isomorphic to a cycle. For if, G has a subgraph isomorphic to a cycle then in any planar embedding of $G, f \geq 2$. Therefore, G is a tree and hence $|G|-\|G\|+f=n-(n-1)+1=2$.
So, assume that Equation (8.3) is true for all plane connected graphs having $2 \leq f<n$. Now, let G be a connected planar graph with $f=n$. Now, choose an edge that is not a cut-edge, say e. Then, $G-e$ is still a connected graph. Also, the edge e is incident with two separate faces and hence it's removal will combine the two faces and thus $G-e$ has only $n-1$ faces. Thus,

$$
|G|-\|G\|+f=|G-e|-(\|G-e\|+1)+n=|G-e|-\|G-e\|+(n-1)=2
$$

using the induction hypothesis. Hence, the required result follows.
Lemma 8.12.5. Let G be a plane bridgeless graph with $\|G\| \geq 2$. Then, $2\|G\| \geq 3 f$. Further, if G has no cycle of length 3 then, $2\|G\| \geq 4 f$.

Proof. For each edge put two dots on either side of the edge. The total number of dots is $2\|G\|$. If G has a cycle then each face has at least three edges. So, the total number of dots is at least $3 f$. Further, if G does not have a cycle of length 3 , then $2\|G\| \geq 4 f$.

Theorem 8.12.6. The complete graph K_{5} and the complete bipartite graph $K_{3,3}$ are not planar.
Proof. If K_{5} is planar, then consider a plane representation of it. By Equation (8.3), $f=7$. But, by Lemma 8.12.5, one has $20=2\|G\| \geq 3 f=21$, a contradiction.
If $K_{3,3}$ is planar, then consider a plane representation of it. Note that it does not have a C_{3}. Also, by Euler's formula, $f=5$. Hence, by Lemma 8.12.5, one has $18=2\|G\| \geq 4 f=20$, a contradiction.

Definition 8.12.7. [Subdivision, homeomorphic] Let G be a graph. Then, a subdivision of an edge $u v$ in G is obtained by replacing the edge by two edges $u w$ and $w v$, where w is a new vertex. Two graphs are said to be homeomorphic if they can be obtained from the same graph by a sequence of subdivisions.

For example, for each $m, n \in \mathbf{N}$, the paths P_{n} and P_{m} are homeomorphic. Similarly, all the cyclic graphs are homeomorphic to the cycle C_{3} if our study is over simple graphs. In general, one can say that all cyclic graphs are homeomorphic to the graph $G=(V, E)$, where $V=\{v\}$ and $E=\{e, e\}$ (i.e., a graph having exactly one vertex and a loop). Also, note that if two graphs are isomorphic then they are also homeomorphic. Figure 8.17 gives examples of homeomorphic graphs that are different from a path or a cycle.

Figure 8.17: Homeomorphic graphs

Theorem 8.12.8. [Kuratowski, 1930] A graph is planar if and only if it has no subgraph homeomorphic K_{5} or $K_{3,3}$.

Proof. Omitted.
We have the following observations that directly follow from Kuratowski theorem.
Remark 8.12.9. 1. Among all simple connected non-planar graphs
(a) the complete graph K_{5} has minimum number of vertices.
(b) the complete bipartite graph $K_{3,3}$ has minimum number of edges.
2. If Y is a non-planar subgraph of a graph X then X is also non-planar.

Definition 8.12.10. [Blocks of a graph] Let G be a graph. Define a relation on the edges of G by $e_{1} \sim e_{2}$ if either $e_{1}=e_{2}$ or there is a cycle containing both these edges. Note that this is an
equivalence relation. Let E_{i} be the equivalence class containing the edge e_{i}. Also, let V_{i} denote the endpoints of the edges in E_{i}. Then, the induced subgraphs $\left\langle V_{i}\right\rangle$ are called the blocks of G.

Proposition 8.12.11. A graph G is planar if and only if each of its blocks are planar.
Proof. Omitted.
Definition 8.12.12. [Maximal planar] A graph is called maximal planar if it is planar and addition of any more edges results in a non-planar graph. A maximal plane graph is necessarily connected.

Proposition 8.12.13. If G is a maximal planar graph with m edges and $n \geq 3$ vertices, then every face is a triangle and $m=3 n-6$.

Proof. Suppose there is a face, say f, described by the cycle $\left[u_{1}, \ldots, u_{k}, u_{1}\right], k \geq 4$. Then, we can take a curve joining the vertices u_{1} and u_{3} lying totally inside the region f, so that $G+u_{1} u_{3}$ is planar. This contradicts the fact that G is maximal planar. Thus, each face is a triangle. It follows that $2 m=3 f$. As $n-m+f=2$, we have $2 m=3 f=3(2-n+m)$ or $m=3 n-6$.

Exercise 8.12.14. 1. Suppose that G is a plane graph with n vertices such that each face is a 4-cycle. What is the number of edges in G ?
2. Show that the Petersen graph has a subgraph homeomorphic to $K_{3,3}$.
3. Show that a plane graph on $n \geq 3$ vertices can have at most $2 n-5$ bounded faces.
4. Is it necessary that a plane graph G should contain a vertex of degree less than 5 ?
5. Let G be a plane graph on n vertices, m edges, f faces and k components. Prove by induction that $n-m+f=k+1$.
6. If G is a plane graph without 3 -cycles, then show that $\delta(G) \leq 3$.
7. Show that any plane graph on $n \geq 4$ vertices has at least four vertices of degree at most five.
8. Produce a planar embedding of the graph G that appears in Figure 8.18.

Figure 8.18: A graph on 8 vertices

8.13 Vertex Coloring

Definition 8.13.1. [k-colorable] A graph G is said to be \boldsymbol{k}-colorable if the vertices can be assigned k colors in such a way that adjacent vertices get different colors. The chromatic number of G, denoted $\chi(G)$, is the minimum k such that G is k-colorable.

Theorem 8.13.2. For every graph $G, \chi(G) \leq \Delta(G)+1$.
Proof. If $|G|=1$, the statement is trivial. Assume that the result is true for $|G|=n$ and let G be a graph on $n+1$ vertices. Let $H=G-1$. As H is $(\Delta(G)+1)$-colorable and $d(1) \leq \Delta(G)$, the vertex 1 can be given a color other than its neighbors.

Theorem 8.13.3. [Brooks, 1941] Every non complete graph which is not an odd cycle has $\chi(G) \leq \Delta(G)$.

Theorem 8.13.4. [5-color Theorem] Every Planar graph is 5-colorable.
Proof. Let G be a minimal planar graph on $n \geq 6$ vertices and m edges, such that G is not 5 -colorable. Then, by Proposition 8.12.13, $m \leq 3 n-6$. So, $n \delta(G) \leq 2 m \leq 6 n-12$ and hence, $\delta(G) \leq 2 m / n \leq 5$. Let v be a vertex of degree 5 . Note that by the minimality of $G, G-v$ is 5 -colorable. If neighbors of v use at most 4 colors, then v can be colored with the 5 -th color to get a 5 -coloring of G. Else, take a planar embedding in which the neighbors v_{1}, \ldots, v_{5} of v appear in clockwise order.
Let $H=G\left[V_{i} \cup V_{j}\right]$ be the graph spanned by the vertices colored i or j. If v_{i} and v_{j} are in different connected components of H, then we can swap colors i and j in a component that contains v_{i}, so that the vertices v_{1}, \ldots, v_{5} use only 4 colors. Thus, as above, in this case the graph G is 5 -colorable. Otherwise, there is a 1,3 -colored path between v_{1} and v_{3} and similarly, a 2,4 -colored path between v_{2} and v_{4}. But this is not possible as the graph G is planar. Hence, every planar graph is 5 -colorable.

8.14 Adjacency Matrix

Definition 8.14.1. [adjacency matrix] Let $G=(V, E)$ be a simple (undirected) graph on vertices $1, \ldots, n$. Then, the adjacency matrix $A(G)$ of G (or simply A) is described by

$$
a_{i j}= \begin{cases}1 & \text { if }\{i, j\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

Let H be the graph obtained by relabeling the vertices of G. Then, note that $A(H)=$ $S^{-1} A(G) S$, for some permutation matrix S (recall that for a permutation matrix $S^{t}=S^{-1}$). Hence, we talk of the adjacency matrix of a graph and do not worry about the labeling of the vertices of G.
will give an adjacency matrix, say B. But, the

Example 8.14.2. The adjacency matrices of the 4 -cycle C_{4} and the path P_{4} on 4 vertices are given below.

$$
A\left(C_{4}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right], A\left(P_{4}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Exercise 8.14.3. A graph G is not connected if and only if there exists a permutation matrix P such that $A(G)=\left[\begin{array}{cc}A_{11} & 0 \\ 0 & A_{22}\end{array}\right]$, for some matrices A_{11} and A_{22}.
Theorem 8.14.4. The (i, j) entry of $B=A(G)^{k}$ is the number of i - j-walks of length k.
Proof. Note that by the definition of matrix product

$$
b_{i j}=\sum_{i_{1}, \ldots, i_{k-1}} a_{i i_{1}} a_{i_{1} i_{2}} \cdots a_{i_{k-1} i_{k}}
$$

Thus, $b_{i j}=r$ if and only if we have r sequences i_{1}, \ldots, i_{k-1} with $a_{i i_{1}}=\cdots=a_{i_{k-1} i_{k}}=1$. That is, $b_{i j}=r$ if and only if we have r walks of length k between i and j.

Theorem 8.14.5. Let G be a graph G of order n. Then, G is connected if and only if $[I+$ $A(G)]^{n-1}$ is entrywise positive.

Proof. Put $B=I+A$ and let G be connected. If P is an $i-j$-path of length $n-1$, then $B_{i j}^{n-1} \geq$ $A_{i j}^{n-1} \geq 1$. If $P=\left[i, i_{1}, \ldots, i_{k}=j\right]$ is an i - j-path of length $k<n-1$, then $b_{i i} \ldots b_{i i} b_{i i_{1}} \ldots b_{i_{k-1} j}=$ 1 , where $b_{i i}$ is used $n-1-k$ times. Thus, $B_{i j}^{n-1}>0$.
Conversely, let $B_{i j}^{n-1}>0$. Then, the corresponding summand $b_{i i_{1}} \ldots b_{i_{n-1} j}$ is positive. By throwing out entries of the form $b_{i i}$, for $1 \leq i \leq n$, from this expression, we have an expression which corresponds to an $i-j$-path of length at most $n-1$. As B^{n-1} is entrywise positive, it follows that G is connected.
Do you want to put Vertex-edge incidence matrix or the $\{-1,0,1\}$ incidence matrix? If so, which results other than Matrix Tree Theorem should be stated. We need not give the proofs.

Definition 8.14.6. [Vertex-edge incidence matrix] The vertex-edge incidence matrix M of G is a $|G| \times\|G\|$ matrix whose (i, j)-entry is described by

$$
m_{i j}= \begin{cases}1 & \text { if edge } e_{j} \text { is incident on } v_{i}, \\ 0 & \text { else }\end{cases}
$$

8.15 More Exercises

Exercise 8.15.1. 1. Can there be a graph in which the size of a minimum covering is $|G|$?
2. Characterize G if the size of a minimum covering is $|G|-1$.
3. What relationship is there between the size of a minimum covering and $\alpha(G)$?
4. Is it necessary that a plane graph G should contain a vertex of degree at most 5 ?
5. Is $K_{5}-e$ planar, where e is any edge?
6. Is $K_{3,3}-e$ planar, where e is any edge?
7. Is it true that any group of 7 persons there are 3 mutual friends or 4 mutual strangers?
8. Prove/disprove: A two colorable graph is necessarily planar.
9. Draw the tree on the vertex set [12] whose Prüfer code is 9954449795.
10. A game of 'thief' is played in the following way: There is a coin. There are n participants.

One participant takes the coin and passes it to whoever he/she wishes to. Whoever has the coin must pass to somebody (other than the person from whom he/she received it) as quickly as possible. When the music stops, the person with the coin is the 'thief'.

My class students (there are 115 in total) were playing it. There were 2009 passes when the music stopped. I guarantee that the person who started it is not the thief. How?
Not able to understand
11. How many chordal graphs are there on the vertex set [4]?
12. Count with diameter: how many nonisomorphic trees are there of order 7?
13. List the automorphisms of the following graph.

Bibliography

[1] G. Agnarson and R. Greenlaw, Graph Theory: Modelling, Applications and Algorithm, Pearson Education.
[2] R. B. Bapat, Graphs and Matrices, Hindustan Book Agency, New Delhi, 2010.
[3] J. Cofman, "Catalan Numbers for the Classroom?", Elem. Math., 52 (1997), 108-117.
[4] D. M. Cvetkovic, Michael Doob and Horst Sachs, Spectra of Graphs: theory and applications, Academic Press, New York, 1980.
[5] D. I. A. Cohen, Basic Techniques of Combinatorial Theory, John Wiley and Sons, New York, 1978.
[6] William Dunham, Euler: The Master of Us All, Published and Distributed by The Mathematical Association of America, 1999.
[7] F. Harary, Graph Theory, Addison-Wesley Publishing Company, 1969.
[8] G. E. Martin, Counting: The Art of Enumerative Combinatorics, Undergraduate Texts in Mathematics, Springer, 2001.
[9] R. Merris, Combinatorics, $2^{\text {th }}$ edition, Wiley-Interscience, 2003.
[10] J. Riordan, Introduction to Combinatorial Analysis, John Wiley and Sons, New York, 1958.
[11] R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, 1999.
[12] H. S. Wilf, Generatingfunctionology, Academic Press, 1990.

Index

(n, m) graph, 144
$C(n, r), 91$
$C_{n}, 109,145$
E, 144
$E(G), 144$
$G-v, 147$
M-alternating, 172
M-augmenting, 172
$N(v), 144$
$N_{G}(v), 144$
$P(n, r), 89$
$P\left(n ; n_{1}, \ldots, n_{k}\right), 91$
$P_{n}, 144$
$S(n, r), 104$
V, 144
$V(G), 144$
$\Delta(G), 147$
$\Gamma(G), 154$
Г $B 30 D G \Gamma B 30 D, 144$
$\mathrm{h} A U B, 147$
$\delta(G), 147$
$\operatorname{dom} f, 7$
$\cap_{\alpha \in S} B_{\alpha}, 27$
$\kappa(G), 162$
$\lambda(G), 163$
$\overline{\bar{A}}, 42$
$\pi_{n}, 107$
$\pi_{n}(k), 107$
rng $f, 7$
$\cup_{\alpha \in S} B_{\alpha}, 27$
$\left\{A_{x}\right\}_{x \in A}, 27$
$\left\{f_{1}, \ldots, f_{n}\right\} \Rightarrow g, 65$
$a+b, 53$
$a b, 53$
$d(v), 144$
$d_{G}(v), 144$
$f_{A}, 8$
k-colorable, 180
k-connected, 162
k-factor, 147
k-place predicate, 68
k-regular, 147
k-th difference, 130
l-edge connected, 163
n-set, 88
p implies $q, 57$
r-combination, 91
r-permutation, 88
r-sequence, 88
$r(m, n), 174$
$s(n, k), 107$
$u-v$ walk, 149
x-bound part, 69
$x^{\bar{n}}, 107$
acyclic, 151
addition rule, 87
adequate, 61
adjacency matrix, 180
adjacent, 144
algebraic, 43
algebraic expansion, 94
anti-chain, 44
antisymmetric, 44
argument, 55
assignment, 56
atom, 83
atomic formula, 55, 69
atomic variables, 56
automorphism, 154
axiom of choice, 49
basic solution, 132
Bell Numbers, 137
bijection, 9
bipartite, 166
blocks, 179
Boolean algebra, 81
Boolean homomorphism, 84
Boolean isomorphism, 84
bound, 69
bounded lattice, 79
bridge, 156

Cardinal numbers, 42
cartesian product, 5, 149
Catalan number, 109
Cauchy product, 120
center, 150
chain, 44
characteristic equation, 131
chord, 151
chordal, 151
chromatic number, 180
circular permutation, 95
clique, 152
clique number, 152
closed, 150
closure, 168
co-prime, 17
codomain set, 7
coin problem/ money changing problem, 128
commutative ring with unity, 24
comparable, 44
complement, 5, 79, 148
complemented, 79
complete, 79, 144
complete bipartite graph, 145
component, 152
composite, 19
composition, 29
conclusion, 65
congruent, 20
conjugate, 126
conjunction/and, 56
conjunctive normal form, 63
connected, 152
connected component, 152
connected permutation, 129
connectives, 58
contradiction (F), 59
contrapositive, 58
converse, 58
countable, 41
covering, 173
cubic, 147
cut edge, 156
cut vertex, 155
cycle graph, 145
cycle/circuit, 150
degree, 144
degree sequence, 175
derangement, 118
diameter, 150
dictionary, 45
difference equation, 130
direct product, 77
disconnected, 152
disjoint, 6
disjoint union, 148
disjunction/or, 56
disjunctive normal form, 63
distance, 150
distributive lattice, 75
divide, 17
divisor, 17
domain of $f, 7$
domain set, 7
dual, 63
Durfee square, 129
edge connectivity, 163
edge density, 152
edge set, 143
edges, 143
egf, 121
embedded, 176
end vertices, 143
end vertices of $P, 150$
enumeration, 41
equivalence class, 31
equivalence relation, 29
equivalent, 9, 59, 71
Euclid's Algorithm, 17
Euclid's algorithm, 18
Euclid's lemma, 19
Euler's totient function, 117
Eulerian, 164
Eulerian tour, 164
exponential generating function, 121
exterior face, 176
faces/regions, 176
falling factorial, 89, 107
family of finite character, 50
family of sets, 27
Ferrer's Diagram, 125
Fibonacci sequence, 130
field, 22
finite, 10
first difference, 130
forest, 155
Formal power series, 120
differentiation, 123
integration, 123
formal power series, 120
free, 69
free Boolean algebra, 82
Frobenius number, 128
Function
Identity, 34
function, 7
functionally complete, 61
Fundamental theorem of arithmetic, 19
general graph, 143
girth, 150
graph invariant, 154
graphic, 175
greatest common divisor, 17
greatest lower bound (glb), 47
Hamel basis, 51
Hamiltonian, 167
Hasse diagram, 46
height, 44
homeomorphic, 178
homogeneous recurrence relation, 130
hypergraph, 144
hypothesis/premise, 65
identity relation, 29
image, 7
incident, 143
independence number, 153
independent, 144
induced, 147
induced partial order, 50, 83
infinite, 10
infinite cardinal numbers, 43
initial condition, 130
initial segment of $a, 48$
injection, 8
internal vertices, 150
interpretation, 69
interpretation of $f, 69$
intersection, 6, 27, 148
inverse, 7, 81
isolated, 144
isomorphic, 153
join, 149
lattice, 75
lattice homomorphism, 78
lattice isomorphism, 78
lattice of n-tuples of 0 and 1,77
lattice path, 108
least common multiple, 20
least upper bound (lub), 47
length, 149
lexicographic, 45
LHRRCC, 130
line graph, 169
linear/complete/total order, 44
linearly ordered set, 44
literal, 63
LNHRRCC, 130
logical conclusion, 65
loop, 143
lower bound, 47
matching, 171
maximal, 47, 152
maximal planar, 179
maximum, 47
maximum matching, 171
minimal, 47, 152
minimum, 47
minimum covering, 173
multigraph, 144
multiplication rule, 87
multiplicative, 119
multiset, 90
negation, 56
neighbor, 144
Newton's Identity, 93
nonhomogeneous recurrence relation, 130
ogf, 121
one-one, 8
onto, 9
orbit, 96
orbit size, 96
order, 144
order of operations, 64
ordinary generating function, 121
partial order, 44
partially ordered set, 44
partition, 103
partition of n into k parts, 107
partition of $S, 103$
path, 149
path graph, 144
pendant, 144, 157
perfect matching, 171
permutation, 88
Petersen graph, 146
Pigeonhole principle (PHP), 113
planar, 176
plane graph, 176
Polish notation, 64
poset, 44
Prüfer code, 159
pre-image, 7
prime, 19
principal connective, 63
principle of duality, 82
principle of transfinite induction, 48
product, 49
propositional function, 68
pseudograph, 143
quantifiers, 69
quotient, 16
radius, 150
Ramsey number, 174
range of $f, 7$
reciprocal, 122
recurrence relation, 130
reflexive, 29
relation, 7
relation on $X, 29$
relatively prime, 17
remainder, 16
residue, 20
restriction of f to $A, 8$
rising factorial, 107
rotation, 96
satisfiable, 64
saturated by a matching, 171
scope, 69
self conjugate, 126
self-complementary, 154
separating set, 162
Set
Cartesian Product, 5
Complement, 5
Composition of Relations, 29
Difference, 6
Equality, 5
Equivalence Class, 31
Equivalence Relation, 29
Identity Relation, 29
Intersection, 6
Power Set, 6
Subset, 5
Symmetric Difference, 6
Union, 6
set difference, 6
simple graph, 144
single valued, 7
solution, 130
spanning subgraph, 147
squarefree, 86
standard representative, 21
Stirling number of the first kind, 107
Stirling numbers of the second kind, 104
Stirling's Identity, 136
subdivision, 178
subgraph, 147
subset, 5
substitution instance, 60
surjection, 9
symmetric, 29
symmetric difference, 6
tautology $(T), 59$
trail, 149
transcendental, 43
transitive, 29
tree, 155
trivial graph, 144
truth function, 59
truth table, 57
truth value, 56
uncountable, 41
union, $6,27,148$
unit, 19
unity, 19
universe of discourses, 68
upper bound, 47
usual partial order, 44
valid, 71
vertex connectivity, 162
vertex set, 143
vertex-edge incidence matrix, 181
vertices, 143
well formed formulae (wff), 58
well order, 48
width, 44
Wilson's Theorem, 23
word expansion, 94

[^0]: ${ }^{1}$ We use pictures to help our understanding and they are not parts of proof.
 ${ }^{2}$ The domain set is the set from which we define our relations but $\operatorname{dom} f$ is the domain of the particular relation f. They are different.

[^1]: ${ }^{1}$ PMI is actually a part of Peano' axioms that defines \mathbb{N} as: a) $1 \in \mathbb{N}$. b) For each $n \in \mathbb{N}$, the successor $s(n) \in \mathbb{N}$. c) 1 is not a successor of any natural number. d) If $s(m)=s(n)$ happens for natural numbers m and n, then $m=n$. e) Let $S \subseteq \mathbb{N}$ such that $1 \in S$ and $s(k) \in S$, for each $k \in S$. Then, $S=\mathbb{N}$.

[^2]: ${ }^{1}$ The way we see this convention is as follows: First we agree that the intersection of an empty class of subsets is a subset of X. Now, let $x \in X$ such that $x \notin \underset{\alpha \in S}{ } B_{\alpha}$. This implies that there exists an $\alpha \in S$ such that $x \notin B_{\alpha}$. Since S is empty, such an α does not exist.

[^3]: ${ }^{1}$ Recall that every real number has a unique nonterminating decimal representation.

[^4]: ${ }^{1}$ When we ask for more than one example, we encourage the reader to get examples of different types, if possible.

[^5]: ${ }^{1}$ Take an allocation of objects from G_{1}, \ldots, G_{k} to n distinct places, where each location receives at most one object. There are n_{k+1} locations which are empty. Supply an object from G_{k+1} to each of these locations. We have created an arrangement of elements of G_{1}, \ldots, G_{k+1}. Conversely, take an arrangement of elements of G_{1}, \ldots, G_{k+1}. View this as an allocation of elements of G_{1}, \ldots, G_{k+1} to n distinct places. Empty the places which have received elements from G_{k+1}. We have created an allocation of elements of G_{1}, \ldots, G_{k} to n distinct places, where each location receives at most one object.

[^6]: ${ }^{1}$ Nonstandard notion
 ${ }^{2}$ Nonstandard notion

[^7]: ${ }^{1}$ Think of creating the circular permutation from a given permutation.

[^8]: ${ }^{1}$ A simple graph is a hypergraph, (V, E), if E is a collection of nonempty subsets of V.

[^9]: ${ }^{1} C(n, 2)$.
 ${ }^{2}$ Otherwise $\sum d(v)$ is odd.

[^10]: ${ }^{1}$ No, as $\sum d(v)=15$, not even.
 ${ }^{2} 8!/(2!)^{4}$.

[^11]: ${ }^{1}$ If $d_{G}(u)<d_{G}(v)$, then $d_{\bar{G}}(u)=n-1-d_{G}(u)$. Hence, $\Delta(G)+\Delta(\bar{G}) \geq d_{G}(v)+n-1-d_{G}(u)>d_{G}(v)+n-$ $1-d_{G}(v) \geq n$. Thus, the answer is regular graphs.

[^12]: ${ }^{1} G+H$.

[^13]: ${ }^{1}$ Otherwise, v_{2} is incident to just one alive edge and some dead edges. This means v_{2} has received more signal than it has sent.
 ${ }^{2} 7$: 3 edges can be put in 2^{3} ways. One of them is a cycle.
 ${ }^{3} 61$: 6 edges can be put in 2^{6} ways. There are three 4 -cycles.

[^14]: ${ }^{1} 2$.
 ${ }^{2}$ Put $H=G-v$. Then, $\|H\|=\varepsilon(G) n-d(v)$, so that $\varepsilon(H)=\frac{\varepsilon(G) n-d(v)}{n-1}=\varepsilon(G)+\frac{\varepsilon(G)-d(v)}{n-1}$. So, we should choose a vertex v with degree more that $\varepsilon(G)$.
 ${ }^{3}$ Yes.

[^15]: ${ }^{1}$ Yes. Otherwise, we have $\varepsilon(G)<d(v)$, for each v. In particular $\varepsilon(G)<\delta(G)$, a contradiction.

[^16]: ${ }^{1}$ Yes. Take $G=([4],\{\{1,2\},\{1,3\},\{1,4\},\{3,4\}\})$ and $v=1$.

